scPlant: A versatile framework for single-cell transcriptomic data analysis in plants

被引:7
|
作者
Cao, Shanni [1 ]
He, Zhaohui [1 ]
Chen, Ruidong [1 ]
Luo, Yuting [1 ]
Fu, Liang-Yu [1 ]
Zhou, Xinkai [1 ]
He, Chao [2 ]
Yan, Wenhao [2 ]
Zhang, Chen -Yu [1 ]
Chen, Dijun [1 ]
机构
[1] Nanjing Univ, Sch Life Sci, State Key Lab Pharmaceut Biotechnol, Nanjing 210023, Peoples R China
[2] Huazhong Agr Univ, Natl Key Lab Crop Genet Improvement, Hubei Hongshan Lab, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
STOMATAL LINEAGE; MAIZE; EXPRESSION; INFERENCE; NETWORKS; ATLAS; ROOT; LEAF;
D O I
10.1016/j.xplc.2023.100631
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell transcriptomics has been fully embraced in plant biological research and is revolutionizing our understanding of plant growth, development, and responses to external stimuli. However, single-cell transcriptomic data analysis in plants is not trivial, given that there is currently no end-to-end solution and that integration of various bioinformatics tools involves a large number of required dependencies. Here, we present scPlant, a versatile framework for exploring plant single-cell atlases with minimum input data provided by users. The scPlant pipeline is implemented with numerous functions for diverse analytical tasks, ranging from basic data processing to advanced demands such as cell-type annotation and deconvolution, trajectory inference, cross-species data integration, and cell-type-specific gene regulatory network construction. In addition, a variety of visualization tools are bundled in a builtin Shiny application, enabling exploration of single-cell transcriptomic data on the fly.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] WebAtlas pipeline for integrated single-cell and spatial transcriptomic data
    Li, Tong
    Horsfall, David
    Basurto-Lozada, Daniela
    Roberts, Kenny
    Prete, Martin
    Lawrence, John E. G.
    He, Peng
    Tuck, Elisabeth
    Moore, Josh
    Yoldas, Aybuke Kupcu
    Babalola, Kolawole
    Hartley, Matthew
    Ghazanfar, Shila
    Teichmann, Sarah A.
    Haniffa, Muzlifah
    Bayraktar, Omer Ali
    NATURE METHODS, 2025, 22 (01) : 3 - 5
  • [42] scAuto as a comprehensive framework for single-cell chromatin accessibility data analysis
    Gong M.
    Yu Y.
    Wang Z.
    Zhang J.
    Wang X.
    Fu C.
    Zhang Y.
    Wang X.
    Computers in Biology and Medicine, 2024, 171
  • [43] Polyphony: an Interactive Transfer Learning Framework for Single-Cell Data Analysis
    Cheng, Furui
    Keller, Mark S.
    Qu, Huamin
    Gehlenborg, Nils
    Wang, Qianwen
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2023, 29 (01) : 591 - 601
  • [44] DeepGSEA: explainable deep gene set enrichment analysis for single-cell transcriptomic data
    Xiong, Guangzhi
    Leroy, Nathan J.
    Bekiranov, Stefan
    Sheffield, Nathan C.
    Zhang, Aidong
    BIOINFORMATICS, 2024, 40 (07)
  • [45] A hybrid deep learning framework for gene regulatory network inference from single-cell transcriptomic data
    Zhao, Mengyuan
    He, Wenying
    Tang, Jijun
    Zou, Quan
    Guo, Fei
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (02)
  • [46] Single-Cell Transcriptomic Analysis Identifies a Unique Pulmonary Lymphangioleiomyomatosis Cell
    Guo, Minzhe
    Yu, Jane J.
    Perl, Anne Karina
    Wikenheiser-Brokamp, Kathryn A.
    Riccetti, Matt
    Zhang, Erik Y.
    Sudha, Parvathi
    Adam, Mike
    Potter, Andrew
    Kopras, Elizabeth J.
    Giannikou, Krinio
    Potter, S. Steven
    Sherman, Sue
    Hammes, Stephen R.
    Kwiatkowski, David J.
    Whitsett, Jeffrey A.
    McCormack, Francis X.
    Xu, Yan
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2020, 202 (10) : 1373 - 1387
  • [47] Unraveling immunotherapeutic targets for endometriosis: a transcriptomic and single-cell analysis
    Zhou, Cankun
    Feng, Minqing
    Chen, Yonglian
    Lv, Side
    Zhang, Yifan
    Chen, Jiebo
    Zhang, Rujian
    Huang, Xiaobin
    FRONTIERS IN IMMUNOLOGY, 2023, 14
  • [48] Tools for Genomic and Transcriptomic Analysis of Microbes at Single-Cell Level
    Chen, Zixi
    Chen, Lei
    Zhang, Weiwen
    FRONTIERS IN MICROBIOLOGY, 2017, 8
  • [49] Single-cell analysis of microglial transcriptomic diversity in subarachnoid haemorrhage
    Chen, Junfan
    Sun, Lei
    Lyu, Hao
    Zheng, Zhiyuan
    Lai, Huasheng
    Wang, Yang
    Luo, Yujie
    Lu, Gang
    Chan, Wai Yee
    Guan, Sheng
    Zhang, Yisen
    Chen, Xinyi
    Li, Zhongqi
    Ko, Ho
    Wong, Kwok Chu George
    CLINICAL AND TRANSLATIONAL MEDICINE, 2022, 12 (04):
  • [50] Single-cell transcriptomic analysis of chondrocytes in cartilage and pathogenesis of osteoarthritis
    Huang, Changyuan
    Zeng, Bin
    Zhou, Bo
    Chen, Guanming
    Zhang, Qi
    Hou, Wenhong
    Xiao, Guozhi
    Duan, Li
    Hong, Ni
    Jin, Wenfei
    GENES & DISEASES, 2025, 12 (02)