scPlant: A versatile framework for single-cell transcriptomic data analysis in plants

被引:8
|
作者
Cao, Shanni [1 ]
He, Zhaohui [1 ]
Chen, Ruidong [1 ]
Luo, Yuting [1 ]
Fu, Liang-Yu [1 ]
Zhou, Xinkai [1 ]
He, Chao [2 ]
Yan, Wenhao [2 ]
Zhang, Chen -Yu [1 ]
Chen, Dijun [1 ]
机构
[1] Nanjing Univ, Sch Life Sci, State Key Lab Pharmaceut Biotechnol, Nanjing 210023, Peoples R China
[2] Huazhong Agr Univ, Natl Key Lab Crop Genet Improvement, Hubei Hongshan Lab, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
STOMATAL LINEAGE; MAIZE; EXPRESSION; INFERENCE; NETWORKS; ATLAS; ROOT; LEAF;
D O I
10.1016/j.xplc.2023.100631
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell transcriptomics has been fully embraced in plant biological research and is revolutionizing our understanding of plant growth, development, and responses to external stimuli. However, single-cell transcriptomic data analysis in plants is not trivial, given that there is currently no end-to-end solution and that integration of various bioinformatics tools involves a large number of required dependencies. Here, we present scPlant, a versatile framework for exploring plant single-cell atlases with minimum input data provided by users. The scPlant pipeline is implemented with numerous functions for diverse analytical tasks, ranging from basic data processing to advanced demands such as cell-type annotation and deconvolution, trajectory inference, cross-species data integration, and cell-type-specific gene regulatory network construction. In addition, a variety of visualization tools are bundled in a builtin Shiny application, enabling exploration of single-cell transcriptomic data on the fly.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Single-cell transcriptomic analysis of the tumor ecosystem of adenoid cystic carcinoma
    Lin, Quanquan
    Fang, Zhanjie
    Sun, Jinlong
    Chen, Fei
    Ren, Yipeng
    Fu, Zhenhong
    Yang, Sefei
    Feng, Lin
    Wang, Feng
    Song, Zhigang
    Chen, Wei
    Yu, Wenjun
    Wang, Chen
    Shi, Yixin
    Liang, Yue
    Zhang, Haizhong
    Qu, Hongzhu
    Fang, Xiangdong
    Xi, Qing
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [22] Prediction of protein-RNA interactions from single-cell transcriptomic data
    Fiorentino, Jonathan
    Armaos, Alexandros
    Colantoni, Alessio
    Tartaglia, Gian Gaetano
    NUCLEIC ACIDS RESEARCH, 2024, 52 (06)
  • [23] CASi: A framework for cross-timepoint analysis of single-cell RNA sequencing data
    Wang, Yizhuo
    Flowers, Christopher R.
    Wang, Michael
    Huang, Xuelin
    Li, Ziyi
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [24] scMHNN: a novel hypergraph neural network for integrative analysis of single-cell epigenomic, transcriptomic and proteomic data
    Li, Wei
    Xiang, Bin
    Yang, Fan
    Rong, Yu
    Yin, Yanbin
    Yao, Jianhua
    Zhang, Han
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (06)
  • [25] Opportunities and tradeoffs in single-cell transcriptomic technologies
    Conte, Matilde I.
    Fuentes-Trillo, Azahara
    Conde, Cecilia Dominguez
    TRENDS IN GENETICS, 2024, 40 (01) : 83 - 93
  • [26] Advances in Single-Cell Transcriptome Sequencing and Spatial Transcriptome Sequencing in Plants
    Lv, Zhuo
    Jiang, Shuaijun
    Kong, Shuxin
    Zhang, Xu
    Yue, Jiahui
    Zhao, Wanqi
    Li, Long
    Lin, Shuyan
    PLANTS-BASEL, 2024, 13 (12):
  • [27] Single-cell transcriptomic analysis identifies murine heart molecular features at embryonic and neonatal stages
    Feng, Wei
    Bais, Abha
    He, Haoting
    Rios, Cassandra
    Jiang, Shan
    Xu, Juan
    Chang, Cindy
    Kostka, Dennis
    Li, Guang
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [28] scPROTEIN: a versatile deep graph contrastive learning framework for single-cell proteomics embedding
    Li, Wei
    Yang, Fan
    Wang, Fang
    Rong, Yu
    Liu, Linjing
    Wu, Bingzhe
    Zhang, Han
    Yao, Jianhua
    NATURE METHODS, 2024, 21 (04) : 623 - 634
  • [29] Application and prospects of single-cell and spatial omics technologies in woody plants
    Liang, Shaoming
    Li, Yiling
    Chen, Yang
    Huang, Heng
    Zhou, Ran
    Ma, Tao
    FORESTRY RESEARCH, 2023, 3
  • [30] Comprehensive Integration of Single-Cell Data
    Stuart, Tim
    Butler, Andrew
    Hoffman, Paul
    Hafemeister, Christoph
    Papalexi, Efthymia
    Mauck, William M., III
    Hao, Yuhan
    Stoeckius, Marlon
    Smibert, Peter
    Satija, Rahul
    CELL, 2019, 177 (07) : 1888 - +