scPlant: A versatile framework for single-cell transcriptomic data analysis in plants

被引:7
|
作者
Cao, Shanni [1 ]
He, Zhaohui [1 ]
Chen, Ruidong [1 ]
Luo, Yuting [1 ]
Fu, Liang-Yu [1 ]
Zhou, Xinkai [1 ]
He, Chao [2 ]
Yan, Wenhao [2 ]
Zhang, Chen -Yu [1 ]
Chen, Dijun [1 ]
机构
[1] Nanjing Univ, Sch Life Sci, State Key Lab Pharmaceut Biotechnol, Nanjing 210023, Peoples R China
[2] Huazhong Agr Univ, Natl Key Lab Crop Genet Improvement, Hubei Hongshan Lab, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
STOMATAL LINEAGE; MAIZE; EXPRESSION; INFERENCE; NETWORKS; ATLAS; ROOT; LEAF;
D O I
10.1016/j.xplc.2023.100631
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell transcriptomics has been fully embraced in plant biological research and is revolutionizing our understanding of plant growth, development, and responses to external stimuli. However, single-cell transcriptomic data analysis in plants is not trivial, given that there is currently no end-to-end solution and that integration of various bioinformatics tools involves a large number of required dependencies. Here, we present scPlant, a versatile framework for exploring plant single-cell atlases with minimum input data provided by users. The scPlant pipeline is implemented with numerous functions for diverse analytical tasks, ranging from basic data processing to advanced demands such as cell-type annotation and deconvolution, trajectory inference, cross-species data integration, and cell-type-specific gene regulatory network construction. In addition, a variety of visualization tools are bundled in a builtin Shiny application, enabling exploration of single-cell transcriptomic data on the fly.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] An analytical framework for interpretable and generalizable single-cell data analysis
    Jian Zhou
    Olga G. Troyanskaya
    Nature Methods, 2021, 18 : 1317 - 1321
  • [22] An analytical framework for interpretable and generalizable single-cell data analysis
    Zhou, Jian
    Troyanskaya, Olga G.
    NATURE METHODS, 2021, 18 (11) : 1317 - +
  • [23] InterCellar enables interactive analysis and exploration of cell−cell communication in single-cell transcriptomic data
    Marta Interlandi
    Kornelius Kerl
    Martin Dugas
    Communications Biology, 5
  • [24] Single-Cell Genomic Analysis in Plants
    Yuan, Yuxuan
    Lee, HueyTyng
    Hu, Haifei
    Scheben, Armin
    Edwards, David
    GENES, 2018, 9 (01):
  • [25] Network-based integrative analysis of single-cell transcriptomic and epigenomic data for cell types
    Wu, Wenming
    Zhang, Wensheng
    Ma, Xiaoke
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (02)
  • [26] Scrublet: Computational Identification of Cell Doublets in Single-Cell Transcriptomic Data
    Wolock, Samuel L.
    Lopez, Romain
    Klein, Allon M.
    CELL SYSTEMS, 2019, 8 (04) : 281 - +
  • [27] Single-cell transcriptomic analysis of Alzheimer's disease
    Mathys, Hansruedi
    Davila-Velderrain, Jose
    Peng, Zhuyu
    Gao, Fan
    Mohammadi, Shahin
    Young, Jennie Z.
    Menon, Madhvi
    He, Liang
    Abdurrob, Fatema
    Jiang, Xueqiao
    Martorell, Anthony J.
    Ransohoff, Richard M.
    Hafler, Brian P.
    Bennett, David A.
    Kellis, Manolis
    Tsai, Li-Huei
    NATURE, 2019, 570 (7761) : 332 - +
  • [28] Single-cell transcriptomic analysis of oligodendrocyte lineage cells
    van Bruggen, David
    Agirre, Eneritz
    Castelo-Branco, Goncalo
    CURRENT OPINION IN NEUROBIOLOGY, 2017, 47 : 168 - 175
  • [29] Single-cell transcriptomic analysis of mouse neocortical development
    Loo, Lipin
    Simon, Jeremy M.
    Xing, Lei
    McCoy, Eric S.
    Niehaus, Jesse K.
    Guo, Jiami
    Anton, E. S.
    Zylka, Mark J.
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [30] Bioinformatics for Single-Cell Transcriptomic Analysis of Tumor Heterogeneity
    Shimamura, Teppei
    CANCER SCIENCE, 2018, 109 : 352 - 352