Volumetric live-cell autofluorescence imaging using Fourier light-field microscopy

被引:1
作者
Ling, Zhi [1 ,2 ,3 ,4 ]
Han, Keyi [1 ,2 ]
Liu, Wenhao [1 ,2 ]
Hua, Xuanwen [1 ,2 ]
Jia, Shu [1 ,2 ,3 ]
机构
[1] Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30332 USA
[2] Emory Univ, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, Parker H Petit Inst Bioengn & Biosci, Atlanta, GA 30332 USA
[4] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Autofluorescence - Autofluorescence imaging - Field microscopy - Fourier - Light fields - Live cell - Live-cell imaging - Mitochondrias - Sub-cellular - Volumetrics;
D O I
10.1364/BOE.495506
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
This study introduces a rapid, volumetric live-cell imaging technique for visualizing autofluorescent sub-cellular structures and their dynamics by employing high-resolution Fourier light-field microscopy. We demonstrated this method by capturing lysosomal autofluorescence in fibroblasts and HeLa cells. Additionally, we conducted multicolor imaging to simultaneously observe lysosomal autofluorescence and fluorescently-labeled organelles such as lysosomes and mitochondria. We further analyzed the data to quantify the interactions between lysosomes and mitochondria. This research lays the foundation for future exploration of native cellular states and functions in three-dimensional environments, effectively reducing photodamage and eliminating the necessity for exogenous labels.& COPY; 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:4237 / 4245
页数:9
相关论文
共 42 条
[1]   CELLULAR AUTOFLUORESCENCE - IS IT DUE TO FLAVINS [J].
BENSON, RC ;
MEYER, RA ;
ZARUBA, ME ;
MCKHANN, GM .
JOURNAL OF HISTOCHEMISTRY & CYTOCHEMISTRY, 1979, 27 (01) :44-48
[2]   Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio) [J].
Cong, Lin ;
Wang, Zeguan ;
Chai, Yuming ;
Hang, Wei ;
Shang, Chunfeng ;
Yang, Wenbin ;
Bai, Lu ;
Du, Jiulin ;
Wang, Kai ;
Wen, Quan .
ELIFE, 2017, 6
[3]   Autofluorescence spectroscopy and imaging: a tool for biomedical research and diagnosis [J].
Croce, A. C. ;
Bottiroli, G. .
EUROPEAN JOURNAL OF HISTOCHEMISTRY, 2014, 58 (04) :320-337
[4]   A model-based deconvolution approach to solve fiber crossing in diffusion-weighted MR imaging [J].
Dell'Acqua, Flavio ;
Rizzo, Giovanna ;
Scifo, Paola ;
Clarke, Rafael Alonso ;
Scotti, Giuseppe ;
Fazio, Ferruccio .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2007, 54 (03) :462-472
[5]   Mitochondria-Lysosome Crosstalk: From Physiology to Neurodegeneration [J].
Deus, Claudia M. ;
Yambire, King Faisal ;
Oliveira, Paulo J. ;
Raimundo, Nuno .
TRENDS IN MOLECULAR MEDICINE, 2020, 26 (01) :71-88
[6]   Lipofuscin, lipofuscin-like pigments and autofluorescence [J].
Di Guardo, G. .
EUROPEAN JOURNAL OF HISTOCHEMISTRY, 2015, 59 (01) :72-73
[7]  
DOLMAN CL, 1981, ADV CELL NEUROBIOL, V2, P205
[8]   Quantitative non-invasive cell characterisation and discrimination based on multispectral autofluorescence features [J].
Gosnell, Martin E. ;
Anwer, Ayad G. ;
Mahbub, Saabah B. ;
Perinchery, Sandeep Menon ;
Inglis, David W. ;
Adhikary, Partho P. ;
Jazayeri, Jalal A. ;
Cahill, Michael A. ;
Saad, Sonia ;
Pollock, Carol A. ;
Sutton-McDowall, Melanie L. ;
Thompson, Jeremy G. ;
Goldys, Ewa M. .
SCIENTIFIC REPORTS, 2016, 6
[9]  
Gray Douglas A, 2005, Sci Aging Knowledge Environ, V2005, pre1, DOI 10.1126/sageke.2005.5.re1
[10]   Fourier light-field microscopy [J].
Guo, Changliang ;
Liu, Wenhao ;
Hua, Xuanwen ;
Li, Haoyu ;
Jia, Shu .
OPTICS EXPRESS, 2019, 27 (18) :25573-25594