Thermoluminescence properties of Cu doped α-Al2O3 crystals synthesized by a solid state method

被引:6
作者
Bagheri, M. [1 ]
Sadeghi, E. [1 ,2 ]
Zahedifar, M. [1 ,2 ]
Harooni, S. [1 ]
机构
[1] Univ Kashan, Fac Phys, Kashan, Iran
[2] Univ Kashan, Inst Nanosci & Nanotechnol, Kashan, Iran
关键词
Thermoluminescence; Kinetic parameters; Variable heating rate; Isothermal decay; TRAPPING PARAMETERS; DOSIMETRY FEATURES; KINETIC-PARAMETERS; TL; LUMINESCENCE; NANOPARTICLES; IRRADIATION; TLD-100; ORDER; MN;
D O I
10.1016/j.radphyschem.2023.110971
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
While impurity doping in aluminum oxide (Al2O3) crystals has proven to be an efficient approach to enhance the material response to ionizing and nonionizing radiations, significantly less attention has been paid to thermo-luminescence (TL) properties of copper doped Al2O3 (Al2O3:Cu) compounds. Here, Al2O3 microparticles (MPs) are synthesized and doped with different concentrations of Cu (0.1-1 mol%) using a solid state method. Scanning electron microscopy (SEM) was used to investigate the morphology and size of the synthesized MPs. The crystal structure and composition of the alpha-Al2O3 sample were studied by X-ray diffraction (XRD) and X-ray energy diffraction (EDX) analyses, respectively. The optimal amount of impurity for the maximum TL response to gamma rays of 60Co source was found to be 0.5 mol%. The kinetic parameters of the TL glow curve of the prepared samples were calculated by a computer fitting method. Also, the isothermal decay and variable heating rate methods were used to determine the activation energy and the frequency factor of the TL glow curve. Other TL properties of these MPs, including the TL glow curve, extinction and linear dose response region were also investigated.
引用
收藏
页数:11
相关论文
共 42 条
[1]   Thermoluminescence and photoluminescence properties of CeF3:Dy and CeF3:Ni nanoparticles [J].
Abasi, A. ;
Sadeghi, E. ;
Zahedifar, M. .
RADIATION PHYSICS AND CHEMISTRY, 2022, 194
[2]   Thermoluminescence analysis of beta irradiated ZnB2O4: Pr3+ phosphors synthesized by a wet-chemical method [J].
Akca, S. ;
Oglakci, M. ;
Portakal, Z. G. ;
Kucuk, N. ;
Bakr, M. ;
Topaksu, M. ;
Can, N. .
RADIATION PHYSICS AND CHEMISTRY, 2019, 160 :105-111
[3]   Thermoluminescence and kinetic parameters of Dy3+-doped LiYF4 [J].
Andrade, Adriano B. ;
Bispo, Giordano F. da C. ;
Azevedo, Jose H. M. ;
Gomes, Maria de A. ;
Macedo, Zelia S. ;
Valerio, Mario E. G. .
RADIATION PHYSICS AND CHEMISTRY, 2022, 201
[4]   Kinetic parameters of lithium tetraborate based TL materials [J].
Annalakshmi, O. ;
Jose, M. T. ;
Madhusoodanan, U. ;
Venkatraman, B. ;
Amarendra, G. .
JOURNAL OF LUMINESCENCE, 2013, 141 :60-66
[5]  
[Anonymous], 1997, APPL THERMOLUMINESCE, DOI DOI 10.1142/9789812830890_0007
[6]   CaSO4:Dy,Mn: A new and highly sensitive thermoluminescence phosphor for versatile dosimetry [J].
Bahl, Shaila ;
Lochab, S. P. ;
Kumar, Pratik .
RADIATION PHYSICS AND CHEMISTRY, 2016, 119 :136-141
[7]   Synthesis and luminescent properties of nanoparticles GdCaAl3O7: RE3+ (RE = Eu, Tb) via the sol-gel method [J].
Bao, Amurisana ;
Tao, Chunyan ;
Yang, Hua .
JOURNAL OF LUMINESCENCE, 2007, 126 (02) :859-865
[8]   Optically stimulated luminescence studies in combustion synthesized Al2O3:C,Cu,P [J].
Barve, R. A. ;
Patil, R. R. ;
Moharil, S. V. ;
Bhatt, B. C. ;
Kulkarni, M. S. .
APPLIED RADIATION AND ISOTOPES, 2015, 104 :212-216
[9]   Numerical analysis of the irradiation and heating processes of thermoluminescent materials [J].
Benavente, J. F. ;
Gomez-Ros, J. M. ;
Romero, A. M. .
RADIATION PHYSICS AND CHEMISTRY, 2020, 170
[10]   On the various-heating-rates method for evaluating the activation energies of thermoluminescence peaks [J].
Chen, R. ;
Lawless, J. L. ;
Pagonis, V .
RADIATION MEASUREMENTS, 2022, 150