On a Problem of V. V. Nemytskii

被引:0
作者
Kalitine, B. S. [1 ]
机构
[1] Belarusian State Univ, Minsk 220030, BELARUS
关键词
dynamical system; invariant set; attraction; elliptic point; COMPACT; NEIGHBORHOODS; SETS;
D O I
10.1134/S0001434623010236
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study trajectories in a neighborhood of attractors and weak attractors of dynamical systems on a metric space. The properties of elliptic and weakly elliptic points of compact invariant sets are studied. A solution of the generalized problem of V. V. Nemytskii concerning the existence of compact invariant sets of weakly elliptic type for the case of asymptotically compact dynamical systems is given.
引用
收藏
页码:200 / 211
页数:12
相关论文
共 30 条
[1]  
[Anonymous], 1991, ATTRACTORS SEMIGROUP, DOI DOI 10.1017/CBO9780511569418
[2]  
Arredondo J.H., 2001, NATL C MEXICAN MATH, V29, P11
[3]  
Bhatia N. P., 1970, STABILITY THEORY DYN, DOI [10.1007/978-3-642-62006-5, DOI 10.1007/978-3-642-62006-5]
[4]   ATTRACTION AND NONSADDLE SETS IN DYNAMICAL SYSTEMS [J].
BHATIA, NP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1970, 8 (02) :229-&
[5]  
Chelysheva L. A., 1968, MAT ISSLED SHTINITSA, P184
[6]  
Filippov A. F., 1993, RUSS AC SC IZV MATH+, V57, P517
[7]  
Izman M. S., 1968, MAT ISSLED SHTINITSA, P60
[8]   Instability of Closed Invariant Sets of Semidynamical Systems: Method of Sign-Constant Lyapunov Functions [J].
Kalitin, B. S. .
MATHEMATICAL NOTES, 2009, 85 (3-4) :374-384
[9]  
Kalitin B. S., 2002, QUALITATIVE THEORY S
[10]  
Kalitin B. S., 1987, INT J UNCERTAIN FUZZ, V31, P869