Multi-omics identification of GPCR gene features in lung adenocarcinoma based on multiple machine learning combinations

被引:7
|
作者
Xie, Yiluo [1 ]
Pan, Xinyu [2 ]
Wang, Ziqiang [3 ]
Ma, Hongyu [1 ]
Xu, Wanjie [1 ]
Huang, Hua [3 ]
Zhang, Jing [4 ]
Wang, Xiaojing [5 ]
Lian, Chaoqun [3 ]
机构
[1] Bengbu Med Coll, Dept Clin Med, Bengbu 233030, Peoples R China
[2] Bengbu Med Coll, Bengbu Med Coll, China Res Ctr Clin Lab Sci 3, Dept Med Imaging, Bengbu 233030, Peoples R China
[3] Bengbu Med Coll, Sch Life Sci, Dept Genet, Bengbu 233000, Peoples R China
[4] Bengbu Med Coll, Sch Life Sci, Dept Genet, Bengbu 233000, Peoples R China
[5] Bengbu Med Coll, Affiliated Hosp 1, Mol Diag Ctr Pulm Crit Care Med, Anhui Prov Key Lab Clin & Preclin Res Resp Dis, Bengbu 233000, Peoples R China
来源
JOURNAL OF CANCER | 2024年 / 15卷 / 03期
基金
中国国家自然科学基金;
关键词
Lung adenocarcinoma; G-protein-coupled receptors; Multi-omics; Single-cell RNA-seq; Prognosis; Immunotherapy efficacy; Machine learning; PROTEIN-COUPLED RECEPTORS; CANCER CELLS; R PACKAGE; BIOMARKERS; ACTIVATION; EXPRESSION; RESISTANCE; SIGNATURES; THERAPIES; MECHANISM;
D O I
10.7150/jca.90990
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: Lung adenocarcinoma is a common malignant tumor that ranks second in the world and has a high mortality rate. G protein -coupled receptors (GPCRs) have been reported to play an important role in cancer; however, G protein -coupled receptor -associated features have not been adequately investigated. Methods: In this study, GPCR-related genes were screened at single -cell and bulk transcriptome levels based on AUcell, single -sample gene set enrichment analysis (ssGSEA) and weighted gene co -expression network (WGCNA) analysis. And a new machine learning framework containing 10 machine learning algorithms and their multiple combinations was used to construct a consensus G protein -coupled receptor -related signature (GPCRRS). GPCRRS was validated in the training set and external validation set. We constructed GPCRRS-integrated nomogram clinical prognosis prediction tools. Multi-omics analyses included genomics, single -cell transcriptomics, and bulk transcriptomics to gain a more comprehensive understanding of prognostic features. We assessed the response of risk subgroups to immunotherapy and screened for personalized drugs targeting specific risk subgroups. Finally, the expression of key GPCRRS genes was verified by RT-qPCR. Results: In this study, we identified 10 GPCR-associated genes that were significantly associated with the prognosis of lung adenocarcinoma by single -cell transcriptome and bulk transcriptome. Univariate and multivariate showed that the survival rate was higher in low risk than in high risk, which also suggested that the model was an independent prognostic factor for LUAD. In addition, we observed significant differences in biological function, mutational landscape, and immune cell infiltration in the tumor microenvironment between high and low risk groups. Notably, immunotherapy was also relevant in the high and low risk groups. In addition, potential drugs targeting specific risk subgroups were identified. Conclusion: In this study, we constructed and validated a lung adenocarcinoma G protein -coupled receptor -related signature, which has an important role in predicting the prognosis of lung adenocarcinoma and the effect of immunotherapy. It is hypothesized that LDHA, GPX3 and DOCK4 are new potential targets for lung adenocarcinoma, which can achieve breakthroughs in prognosis prediction, targeted prevention and treatment of lung adenocarcinoma and provide important guidance for anti -tumor.
引用
收藏
页码:776 / 795
页数:20
相关论文
共 50 条
  • [41] Integration strategies of multi-omics data for machine learning analysis
    Picard, Milan
    Scott-Boyer, Marie -Pier
    Bodein, Antoine
    Perin, Olivier
    Droit, Arnaud
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 3735 - 3746
  • [42] Machine learning and systems genomics approaches for multi-omics data
    Eugene Lin
    Hsien-Yuan Lane
    Biomarker Research, 5
  • [43] Machine learning and multi-omics in precision medicine for ME/CFS
    Huang, Katherine
    Lidbury, Brett A.
    Thomas, Natalie
    Gooley, Paul R.
    Armstrong, Christopher W.
    JOURNAL OF TRANSLATIONAL MEDICINE, 2025, 23 (01)
  • [44] Machine Learning for Multi-Omics Data Identifies Vulnerabilities in a Subset of Squamous Cell Lung Cancers
    Kottmann, D.
    Hwang, W.
    Guo, W.
    Han, N.
    McCaughan, F.
    JOURNAL OF THORACIC ONCOLOGY, 2023, 18 (11) : S433 - S433
  • [45] Multi-omics differential gene regulatory network inference for lung adenocarcinoma tumor progression biomarker discovery
    Tong, Yi-Fan
    He, Qi-En
    Zhu, Jun-Xuan
    Ding, En-Ci
    Song, Kai
    AICHE JOURNAL, 2022, 68 (04)
  • [46] Comprehensive multi-omics integration uncovers mitochondrial gene signatures for prognosis and personalized therapy in lung adenocarcinoma
    Zhang, Wenjia
    Zhao, Lei
    Zheng, Tiansheng
    Fan, Lihong
    Wang, Kai
    Li, Guoshu
    JOURNAL OF TRANSLATIONAL MEDICINE, 2024, 22 (01)
  • [47] Hierarchical autoencoder-based multi-omics subtyping and prognosis prediction framework for lung adenocarcinoma
    Bhat A.R.
    Hashmy R.
    International Journal of Information Technology, 2023, 15 (5) : 2541 - 2549
  • [48] Multi-omics and single-cell analysis reveals machine learning-based pyrimidine metabolism-related signature in the prognosis of patients with lung adenocarcinoma
    Hu, Tong
    Shi, Run
    Xu, Yangyue
    Xu, Tingting
    Fang, Yuan
    Gu, Yunru
    Zhou, Zhaokai
    Shu, Yongqian
    INTERNATIONAL JOURNAL OF MEDICAL SCIENCES, 2025, 22 (06): : 1375 - 1392
  • [49] Integrated Multi-omics Analysis of Early Lung Adenocarcinoma Links Tumor Biological Features with Predicted Indolence or Aggressiveness
    Senosain, Maria-Fernanda
    Zou, Yong
    Patel, Khushbu
    Zhao, Shilin
    Coullomb, Alexis
    Rowe, Dianna J.
    Lehman, Jonathan M.
    Irish, Jonathan M.
    Maldonado, Fabien
    Kammer, Michael N.
    Pancaldi, Vera
    Lopez, Carlos F.
    CANCER RESEARCH COMMUNICATIONS, 2023, 3 (07): : 1350 - 1365
  • [50] Integrative Multi-Omics Approach for Improving Causal Gene Identification
    King, Austin
    Wu, Chong
    GENETIC EPIDEMIOLOGY, 2025, 49 (01)