Multi-omics identification of GPCR gene features in lung adenocarcinoma based on multiple machine learning combinations

被引:7
|
作者
Xie, Yiluo [1 ]
Pan, Xinyu [2 ]
Wang, Ziqiang [3 ]
Ma, Hongyu [1 ]
Xu, Wanjie [1 ]
Huang, Hua [3 ]
Zhang, Jing [4 ]
Wang, Xiaojing [5 ]
Lian, Chaoqun [3 ]
机构
[1] Bengbu Med Coll, Dept Clin Med, Bengbu 233030, Peoples R China
[2] Bengbu Med Coll, Bengbu Med Coll, China Res Ctr Clin Lab Sci 3, Dept Med Imaging, Bengbu 233030, Peoples R China
[3] Bengbu Med Coll, Sch Life Sci, Dept Genet, Bengbu 233000, Peoples R China
[4] Bengbu Med Coll, Sch Life Sci, Dept Genet, Bengbu 233000, Peoples R China
[5] Bengbu Med Coll, Affiliated Hosp 1, Mol Diag Ctr Pulm Crit Care Med, Anhui Prov Key Lab Clin & Preclin Res Resp Dis, Bengbu 233000, Peoples R China
来源
JOURNAL OF CANCER | 2024年 / 15卷 / 03期
基金
中国国家自然科学基金;
关键词
Lung adenocarcinoma; G-protein-coupled receptors; Multi-omics; Single-cell RNA-seq; Prognosis; Immunotherapy efficacy; Machine learning; PROTEIN-COUPLED RECEPTORS; CANCER CELLS; R PACKAGE; BIOMARKERS; ACTIVATION; EXPRESSION; RESISTANCE; SIGNATURES; THERAPIES; MECHANISM;
D O I
10.7150/jca.90990
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: Lung adenocarcinoma is a common malignant tumor that ranks second in the world and has a high mortality rate. G protein -coupled receptors (GPCRs) have been reported to play an important role in cancer; however, G protein -coupled receptor -associated features have not been adequately investigated. Methods: In this study, GPCR-related genes were screened at single -cell and bulk transcriptome levels based on AUcell, single -sample gene set enrichment analysis (ssGSEA) and weighted gene co -expression network (WGCNA) analysis. And a new machine learning framework containing 10 machine learning algorithms and their multiple combinations was used to construct a consensus G protein -coupled receptor -related signature (GPCRRS). GPCRRS was validated in the training set and external validation set. We constructed GPCRRS-integrated nomogram clinical prognosis prediction tools. Multi-omics analyses included genomics, single -cell transcriptomics, and bulk transcriptomics to gain a more comprehensive understanding of prognostic features. We assessed the response of risk subgroups to immunotherapy and screened for personalized drugs targeting specific risk subgroups. Finally, the expression of key GPCRRS genes was verified by RT-qPCR. Results: In this study, we identified 10 GPCR-associated genes that were significantly associated with the prognosis of lung adenocarcinoma by single -cell transcriptome and bulk transcriptome. Univariate and multivariate showed that the survival rate was higher in low risk than in high risk, which also suggested that the model was an independent prognostic factor for LUAD. In addition, we observed significant differences in biological function, mutational landscape, and immune cell infiltration in the tumor microenvironment between high and low risk groups. Notably, immunotherapy was also relevant in the high and low risk groups. In addition, potential drugs targeting specific risk subgroups were identified. Conclusion: In this study, we constructed and validated a lung adenocarcinoma G protein -coupled receptor -related signature, which has an important role in predicting the prognosis of lung adenocarcinoma and the effect of immunotherapy. It is hypothesized that LDHA, GPX3 and DOCK4 are new potential targets for lung adenocarcinoma, which can achieve breakthroughs in prognosis prediction, targeted prevention and treatment of lung adenocarcinoma and provide important guidance for anti -tumor.
引用
收藏
页码:776 / 795
页数:20
相关论文
共 50 条
  • [31] Diagnostic and predictive significance of the ferroptosis-related gene TXNIP in lung adenocarcinoma stem cells based on multi-omics
    Zheng, Yuanyuan
    Yang, Wei
    Wu, Weixuan
    Jin, Feng
    Lu, Dehua
    Gao, Jing
    Wang, Shubin
    TRANSLATIONAL ONCOLOGY, 2024, 45
  • [32] Machine learning based identification of hub genes in renal clear cell carcinoma using multi-omics data
    Zhang, Lichao
    Liu, Mingjun
    Zhang, Zhenjiu
    Chen, Dong
    Chen, Gang
    Liu, Mingyang
    METHODS, 2022, 207 : 110 - 117
  • [33] Multi-omics analysis of molecular landscape and heterogeneity in fetal adenocarcinoma of the lung
    Guo, Wei
    Sun, Li
    Chen, Xiaoxi
    Zhou, Haitao
    Yan, Shi
    Zhao, Gang
    Tang, Haimeng
    Bao, Hua
    Wu, Xue
    Shao, Yang
    Lin, Lin
    CANCER RESEARCH, 2023, 83 (07)
  • [34] From multi-omics data to the cancer druggable gene discovery: a novel machine learning-based approach
    Yang, Hai
    Gan, Lipeng
    Chen, Rui
    Li, Dongdong
    Zhang, Jing
    Wang, Zhe
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (01)
  • [35] Metabolic detection and systems analyses of pancreatic ductal adenocarcinoma through machine learning, lipidomics, and multi-omics
    Wang, Guangxi
    Yao, Hantao
    Gong, Yan
    Lu, Zipeng
    Pang, Ruifang
    Li, Yang
    Yuan, Yuyao
    Song, Huajie
    Liu, Jia
    Jin, Yan
    Ma, Yongsu
    Yang, Yinmo
    Nie, Honggang
    Zhang, Guangze
    Meng, Zhu
    Zhou, Zhe
    Zhao, Xuyang
    Qiu, Mantang
    Zhao, Zhicheng
    Jiang, Kuirong
    Zeng, Qiang
    Guo, Limei
    Yin, Yuxin
    SCIENCE ADVANCES, 2021, 7 (52):
  • [36] Dealing with dimensionality: the application of machine learning to multi-omics data
    Feldner-Busztin, Dylan
    Nisantzis, Panos Firbas
    Edmunds, Shelley Jane
    Boza, Gergely
    Racimo, Fernando
    Gopalakrishnan, Shyam
    Limborg, Morten Tonsberg
    Lahti, Leo
    de Polavieja, Gonzalo G.
    BIOINFORMATICS, 2023, 39 (02)
  • [37] Identification of potential regulatory mutations using multi-omics analysis and haplotyping of lung adenocarcinoma cell lines
    Sarun Sereewattanawoot
    Ayako Suzuki
    Masahide Seki
    Yoshitaka Sakamoto
    Takashi Kohno
    Sumio Sugano
    Katsuya Tsuchihara
    Yutaka Suzuki
    Scientific Reports, 8
  • [38] Machine learning and systems genomics approaches for multi-omics data
    Lin, Eugene
    Lane, Hsien-Yuan
    BIOMARKER RESEARCH, 2017, 5
  • [39] Integration strategies of multi-omics data for machine learning analysis
    Picard M.
    Scott-Boyer M.-P.
    Bodein A.
    Périn O.
    Droit A.
    Computational and Structural Biotechnology Journal, 2021, 19 : 3735 - 3746
  • [40] A machine learning and deep learning-based integrated multi-omics technique for leukemia prediction
    Abbasi, Erum Yousef
    Deng, Zhongliang
    Ali, Qasim
    Khan, Adil
    Shaikh, Asadullah
    Al Reshan, Mana Saleh
    Sulaiman, Adel
    Alshahrani, Hani
    HELIYON, 2024, 10 (03)