Profinite groups with abelian Sylow subgroups

被引:0
作者
Lopes, Lucas C. [1 ,2 ]
Shumyatsky, Pavel [1 ]
Zalesskii, Pavel A. [1 ]
机构
[1] Univ Brasilia, Dept Matemat, Brasilia, DF, Brazil
[2] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
关键词
Abelian; finite rank; profinite groups; Sylow subgroups;
D O I
10.1080/00927872.2023.2239352
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend the definition of a finite A-group to profinite groups and give a description of profinite A-groups as a triple semidirect product of two prosoluble groups with a semisimple group, extending an old result of A. M. Broshi to the profinite case. We also prove that a profinite A-group with finitely generated non-trivial Fitting subgroup is metabelian-by-(finite exponent). If, in addition, G is finitely generated then it is virtually metabelian polycyclic.Communicated by Mandi Schaeffer Fry
引用
收藏
页码:224 / 232
页数:9
相关论文
共 20 条
[1]   GROUPS WITH ABELIAN SYLOW SUBGROUPS [J].
Brandl, Rolf .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2010, 88 (01) :43-47
[2]   FINITE GROUPS WHOSE SYLOW SUBGROUPS ARE ABELIAN [J].
BROSHI, AM .
JOURNAL OF ALGEBRA, 1971, 17 (01) :74-&
[3]  
DIXON J. D., 1967, J. Aust. Math. Soc., V7, P417, DOI [10.1017/S1446788700004353, DOI 10.1017/S1446788700004353]
[4]  
Dummit David S., 2004, Abstract Algebra, Vthird
[5]   SOLVABILITY OF GROUPS OF ODD ORDER [J].
FEIT, W ;
THOMPSON, JG .
PACIFIC JOURNAL OF MATHEMATICS, 1963, 13 (03) :775-&
[6]   The construction of soluble groups. [J].
Hall, P .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1940, 182 (1/4) :206-214
[7]   PRODUCT OF PRIMES [J].
HANSON, D .
CANADIAN MATHEMATICAL BULLETIN, 1972, 15 (01) :33-&
[8]  
HERFORT WN, 1980, ARCH MATH, V33, P404
[10]  
Lubotzky A., 2003, PROG MATH, V212