Radiomics based on enhanced CT for differentiating between pulmonary tuberculosis and pulmonary adenocarcinoma presenting as solid nodules or masses

被引:6
作者
Zhao, Wenjing [1 ]
Xiong, Ziqi [1 ]
Jiang, Yining [1 ]
Wang, Kunpeng [2 ]
Zhao, Min [3 ]
Lu, Xiwei [4 ]
Liu, Ailian [1 ]
Qin, Dongxue [5 ]
Li, Zhiyong [1 ]
机构
[1] Dalian Med Univ, Affiliated Hosp 1, Dept Radiol, Zhongshan Rd 222, Dalian 116011, Liaoning, Peoples R China
[2] Dalian Publ Hlth Clin Ctr, Dept Radiol, Dalian, Liaoning, Peoples R China
[3] GE Healthcare, Beijing, Peoples R China
[4] Dalian Publ Hlth Clin Ctr, Dept TB, Dalian, Liaoning, Peoples R China
[5] Dalian Med Univ, Hosp 2, Dept Radiol, Zhongshan Rd 467, Dalian 116011, Liaoning, Peoples R China
关键词
Pulmonary tuberculosis; Pulmonary adenocarcinoma; Computed tomography; Radiomics; Machine learning; LUNG-CANCER; FEATURES; CLASSIFICATION; MODEL;
D O I
10.1007/s00432-022-04256-y
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose To investigate the incremental value of enhanced CT-based radiomics in discriminating between pulmonary tuberculosis (PTB) and pulmonary adenocarcinoma (PAC) presenting as solid nodules or masses and to develop an optimal radiomics model. Methods A total of 128 lesions (from 123 patients) from three hospitals were retrospectively analyzed and were randomly divided into training and test datasets at a ratio of 7:3. Independent predictors in subjective image features were used to develop the subjective image model (SIM). The plain CT-based and enhanced CT-based radiomics features were screened by the correlation coefficient method, univariate analysis, and the least absolute shrinkage and selection operator, then used to build the plain CT radiomics model (PRM) and enhanced CT radiomics model (ERM), respectively. Finally, the combined model (CM) combining PRM and ERM was established. In addition, the performance of three radiologists and one respiratory physician was evaluated. The areas under the receiver operating characteristic curve (AUCs) were used to assess the performance of each model. Results The differential diagnostic capability of the ERM (training: AUC = 0.933; test: AUC = 0.881) was better than that of the PRM (training: AUC = 0.861; test: AUC = 0.756) and the SIM (training: AUC = 0.760; test: AUC = 0.611). The CM was optimal (training: AUC = 0.948; test: AUC = 0.917) and outperformed the respiratory physician and most radiologists. Conclusions The ERM was more helpful than the PRM for identifying PTB and PAC that present as solid nodules or masses, and the CM was the best.
引用
收藏
页码:3395 / 3408
页数:14
相关论文
共 48 条
[1]   Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening [J].
Aberle, Denise R. ;
Adams, Amanda M. ;
Berg, Christine D. ;
Black, William C. ;
Clapp, Jonathan D. ;
Fagerstrom, Richard M. ;
Gareen, Ilana F. ;
Gatsonis, Constantine ;
Marcus, Pamela M. ;
Sicks, JoRean D. .
NEW ENGLAND JOURNAL OF MEDICINE, 2011, 365 (05) :395-409
[2]   Efficacy and safety of bevacizumab in advanced lung adenocarcinoma patients with stable disease after two cycles of first-line chemotherapy: A multicenter prospective cohort study [J].
Ai, Bin ;
Zhang, Li ;
Huang, Dingzhi ;
Chen, Jun ;
Liu, Zhe ;
Hu, Xingsheng ;
Zhou, Shengyu ;
Hu, Yi ;
Zhao, Jun ;
Yang, Fan .
THORACIC CANCER, 2020, 11 (12) :3641-3644
[3]   Perinodular and Intranodular Radiomic Features on Lung CT Images Distinguish Adenocarcinomas from Granulomas [J].
Beig, Niha ;
Khorrami, Mohammadhadi ;
Alilou, Mehdi ;
Prasanna, Prateek ;
Braman, Nathaniel ;
Orooji, Mahdi ;
Rakshit, Sagar ;
Bera, Kaustav ;
Rajiah, Prabhakar ;
Ginsberg, Jennifer ;
Donatelli, Christopher ;
Thawani, Rajat ;
Yang, Michael ;
Jacono, Frank ;
Tiwari, Pallavi ;
Velcheti, Vamsidhar ;
Gilkeson, Robert ;
Linden, Philip ;
Madabhushi, Anant .
RADIOLOGY, 2019, 290 (03) :783-792
[4]   Tuberculosis: a radiologic review [J].
Burrill, Joshua ;
Williams, Christopher J. ;
Bain, Gillian ;
Conder, Gabriel ;
Hine, Andrew L. ;
Misra, Rakesh R. .
RADIOGRAPHICS, 2007, 27 (05) :1255-1273
[5]   The pulmonary nodule: clinical and radiological characteristics affecting a diagnosis of malignancy [J].
Cardinale, L. ;
Ardissone, F. ;
Novello, S. ;
Busso, M. ;
Solitro, F. ;
Longo, M. ;
Sardo, D. ;
Giors, M. ;
Fava, C. .
RADIOLOGIA MEDICA, 2009, 114 (06) :871-889
[6]   Radiomics signature on CECT as a predictive factor for invasiveness of lung adenocarcinoma manifesting as subcentimeter ground glass nodules [J].
Chen, Wufei ;
Li, Ming ;
Mao, Dingbiao ;
Ge, Xiaojun ;
Wang, Jiaofeng ;
Tan, Mingyu ;
Ma, Weiling ;
Huang, Xuemei ;
Lu, Jinjuan ;
Li, Cheng ;
Hua, Yanqing ;
Wu, Hao .
SCIENTIFIC REPORTS, 2021, 11 (01)
[7]   A CT-based radiomics nomogram for prediction of lung adenocarcinomas and granulomatous lesions in patient with solitary sub-centimeter solid nodules [J].
Chen, Xiangmeng ;
Feng, Bao ;
Chen, Yehang ;
Liu, Kunfeng ;
Li, Kunwei ;
Duan, Xiaobei ;
Hao, Yixiu ;
Cui, Enming ;
Liu, Zhuangsheng ;
Zhang, Chaotong ;
Long, Wansheng ;
Liu, Xueguo .
CANCER IMAGING, 2020, 20 (01)
[8]   Radiomics analysis of contrast-enhanced CT predicts lymphovascular invasion and disease outcome in gastric cancer: a preliminary study [J].
Chen, Xiaofeng ;
Yang, Zhiqi ;
Yang, Jiada ;
Liao, Yuting ;
Pang, Peipei ;
Fan, Weixiong ;
Chen, Xiangguang .
CANCER IMAGING, 2020, 20 (01)
[9]   Outcome prediction in resectable lung adenocarcinoma patients: value of CT radiomics [J].
Choe, Jooae ;
Lee, Sang Min ;
Do, Kyung-Hyun ;
Kim, Seonok ;
Choi, Sehoon ;
Lee, June-Goo ;
Seo, Joon Beom .
EUROPEAN RADIOLOGY, 2020, 30 (09) :4952-4963
[10]  
Collins GS, 2015, ANN INTERN MED, V162, P55, DOI [10.7326/M14-0697, 10.1111/eci.12376, 10.1186/s12916-014-0241-z, 10.1136/bmj.g7594, 10.1016/j.jclinepi.2014.11.010, 10.7326/M14-0698, 10.1016/j.eururo.2014.11.025, 10.1002/bjs.9736, 10.1038/bjc.2014.639]