Single-mode nanolasers based on FP-WGM hybrid cavity coupling

被引:2
作者
Ullah, Salman [1 ,2 ]
Zhuge, Minghua [3 ]
Zhang, Liang [4 ]
Fu, Xiang [4 ]
Ma, Yaoguang [1 ]
Yang, Qing [1 ,2 ]
机构
[1] Zhejiang Univ, Coll Opt Sci & Engn, State Key Lab Extreme Photon & Instrumentat, Hangzhou 310027, Peoples R China
[2] ZJU Hangzhou Global Sci & Technol Innovat Ctr, Hangzhou 311215, Peoples R China
[3] Shenzhen Technol Univ, Coll Integrated Circuits & Optoelect Chips, Shenzhen 518118, Peoples R China
[4] Zhejiang Lab, Res Ctr Novel Computat Sensing & Intelligent Proc, Hangzhou 311100, Peoples R China
基金
中国国家自然科学基金;
关键词
nanowires; coupling; Q-factor; CdS; nanolaser; free spectral range;
D O I
10.1088/1361-6528/ad28d4
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
As an idealized light source, semiconductor nanowire (NW) lasers have been extensively studied due to its potential applications in many fields such as optoelectronics, nanophononics, optical communication, signal processing, and displays. In this letter, we proposed a novel approach to realize a single-mode nanolaser by forming an Fabry-Perot whispering gallery mode (FP-WGM) hybrid nanocavity between two cross-contact CdS NWs, i.e. x and y-NW. In our method, x-NW supports the regular FP oscillation in the axis direction while the cross section of y-NW provides a ultrasmall WGM nanocavity with a higher Q-factor and mode election which confirms the specific single mode can be excited. Experimentally, single-mode lasing emission centered at 517 nm was obtained with full width at half maximum of 0.08 nm and lasing threshold of similar to 50 kW cm-2. The suggested designing skills projected a general strategy for lasing mode regulation and single-mode realization. The single-mode low-threshold lasing strategy in coupled NWs may open a new avenue for practical applications of NW lasers and further trigger other photonic devices at a visible range.
引用
收藏
页数:7
相关论文
共 39 条
[1]   On-chip single-mode CdS nanowire laser [J].
Bao, Qingyang ;
Li, Weijia ;
Xu, Peizhen ;
Zhang, Ming ;
Dai, Daoxin ;
Wang, Pan ;
Guo, Xin ;
Tong, Limin .
LIGHT-SCIENCE & APPLICATIONS, 2020, 9 (01)
[2]   Plasmonic Waveguide-Integrated Nanowire Laser [J].
Bermudez-Urena, Esteban ;
Tutuncuoglu, Gozde ;
Cuerda, Javier ;
Smith, Cameron L. C. ;
Bravo-Abad, Jorge ;
Bozhevolnyi, Sergey I. ;
Fontcuberta i Morral, Anna ;
Garcia-Vidal, Francisco J. ;
Quidant, Romain .
NANO LETTERS, 2017, 17 (02) :747-754
[3]   Nanowire-based integrated photonics for quantum information and quantum sensing [J].
Chang, Jin ;
Gao, Jun ;
Zadeh, Iman Esmaeil ;
Elshaari, Ali W. W. ;
Zwiller, Val .
NANOPHOTONICS, 2023, 12 (03) :339-358
[4]   Nanowire lasers with distributed-Bragg-reflector mirrors [J].
Chen, L. ;
Towe, E. .
APPLIED PHYSICS LETTERS, 2006, 89 (05)
[5]   Hybrid material based on plasmonic nanodisks decorated ZnO and its application on nanoscale lasers [J].
Chen, Zuxin ;
Lai, Boya ;
Zhang, Junming ;
Wang, Guoping ;
Chu, Sheng .
NANOTECHNOLOGY, 2014, 25 (29)
[6]   Holistic Nanowire Laser Characterization as a Route to Optimal Design [J].
Church, Stephen A. ;
Patel, Nikesh ;
Al-Abri, Ruqaiya ;
Al-Amairi, Nawal ;
Zhang, Yunyan ;
Liu, Huiyun ;
Parkinson, Patrick .
ADVANCED OPTICAL MATERIALS, 2023, 11 (07)
[7]   Design of Room Temperature Electrically Pumped Visible Semiconductor Nanolasers [J].
Fan, Yuanlong ;
Shore, K. Alan .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2018, 54 (05)
[8]   Cleaved-coupled nanowire lasers [J].
Gao, Hanwei ;
Fu, Anthony ;
Andrews, Sean C. ;
Yang, Peidong .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (03) :865-869
[9]   Optical Vernier Effect: Recent Advances and Developments [J].
Gomes, Andre D. ;
Bartelt, Hartmut ;
Frazao, Orlando .
LASER & PHOTONICS REVIEWS, 2021, 15 (07)
[10]   GaN nanowire lasers with low lasing thresholds [J].
Gradecak, S ;
Qian, F ;
Li, Y ;
Park, HG ;
Lieber, CM .
APPLIED PHYSICS LETTERS, 2005, 87 (17) :1-3