Removability of time-dependent singularities of solutions to the Navier-Stokes equations

被引:1
作者
Kozono, Hideo [1 ,2 ]
Ushikoshi, Erika [3 ,4 ]
Wakabayashi, Fumitaka [1 ]
机构
[1] Waseda Univ, Dept Math, Tokyo 1698555, Japan
[2] Tohoku Univ, Math Sci Ctr Cocreat Soc MathCCS, Sendai 9808578, Japan
[3] Yokohama Natl Univ, Fac Environm & Informat Sci, Yokohama 2408501, Japan
[4] Osaka Univ, Grad Sch Engn Sci, Osaka 5608531, Japan
关键词
Navier-Stokes equations; Moving singularity intime; Removable singularity; Very weak solution; Serrin's regularity criterion; WEAK SOLUTIONS; INTERIOR REGULARITY;
D O I
10.1016/j.jde.2023.12.034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Omega be a bounded domain in R-N and xi is an element of C-alpha([0, T]; Omega) for 1/N< alpha <= 1. Suppose that u is a smooth solution of the Navier-Stokes equations in boolean OR(0<t<T) (Omega \ {xi(t)}) x {t}, namely, boolean OR(0< t<T){xi(t)} x{t} is supposed to be the set of moving singularities of u in Omega x [0, T]. We prove that if u(x, t) = o(vertical bar x - xi(t)|(-N+beta)) locally uniformly in t is an element of (0, T ) as x -> xi(t) for beta equivalent to max{1/alpha, N - 1}, then u is, in fact, smooth in the whole region Omega x (0, T ). Our result may be regarded as a theorem on removable time-dependent singularities of solutions to the Navier-Stokes equations. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:59 / 81
页数:23
相关论文
共 50 条
[41]   A SYMMETRIC ERROR ESTIMATE FOR GALERKIN APPROXIMATIONS OF TIME-DEPENDENT NAVIER-STOKES EQUATIONS IN TWO DIMENSIONS [J].
Dupont, Todd F. ;
Mogultay, Itir .
MATHEMATICS OF COMPUTATION, 2009, 78 (268) :1919-1927
[42]   On Type I Singularities of the Local Axi-Symmetric Solutions of the Navier-Stokes Equations [J].
Seregin, G. ;
Sverak, V. .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2009, 34 (02) :171-201
[43]   Estimates on fractional higher derivatives of weak solutions for the Navier-Stokes equations [J].
Choi, Kyudong ;
Vasseur, Alexis F. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (05) :899-945
[44]   Uniqueness of weak solutions of the Navier-Stokes equations [J].
Sadek Gala .
Applications of Mathematics, 2008, 53 :561-582
[45]   Asymptotic structure for solutions of the Navier-Stokes equations [J].
Ma, T ;
Wang, SH .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2004, 11 (01) :189-204
[46]   On possible singular solutions to the Navier-Stokes equations [J].
Málek, J ;
Necas, J ;
Pokorny, M ;
Schonbek, ME .
MATHEMATISCHE NACHRICHTEN, 1999, 199 :97-114
[47]   Vortex Filament Solutions of the Navier-Stokes Equations [J].
Bedrossian, Jacob ;
Germain, Pierre ;
Harrop-Griffiths, Benjamin .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2023, 76 (04) :685-787
[48]   Existence of solutions for the compressible Navier-Stokes equations [J].
Yin, HC .
CHINESE SCIENCE BULLETIN, 1996, 41 (10) :805-812
[49]   UNIQUENESS OF WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
Gala, Sadek .
APPLICATIONS OF MATHEMATICS, 2008, 53 (06) :561-582
[50]   On the local smoothness of solutions of the Navier-Stokes equations [J].
Dong, Hongjie ;
Du, Dapeng .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2007, 9 (02) :139-152