Entropy Decay for Davies Semigroups of a One Dimensional Quantum Lattice

被引:4
作者
Bardet, Ivan [1 ]
Capel, Angela [2 ,3 ,4 ]
Gao, Li [2 ,3 ,5 ]
Lucia, Angelo [6 ,7 ]
Perez-Garcia, David [6 ,7 ]
Rouze, Cambyse [2 ,3 ]
机构
[1] Inria Paris, F-75012 Paris, France
[2] Tech Univ Munich, Dept Math, D-85748 Garching, Germany
[3] Munich Ctr Quantum Sci & Technol, D-80799 Munich, Germany
[4] Univ Tubingen, Fachbereich Math, D-72076 Tubingen, Germany
[5] Univ Houston, Dept Math, Houston, TX 77204 USA
[6] Univ Complutense Madrid, Dept Anal Matemat & Matemat Aplicada, Madrid 28040, Spain
[7] Inst Ciencias Matemat, Madrid 28049, Spain
基金
欧洲研究理事会;
关键词
SOBOLEV INEQUALITIES; ENTANGLEMENT; STABILITY; INDEX;
D O I
10.1007/s00220-023-04869-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Given a finite-range, translation-invariant commuting system Hamiltonian on a spin chain, we show that the Davies semigroup describing the reduced dynamics resulting from the joint Hamiltonian evolution of a spin chain weakly coupled to a large heat bath thermalizes rapidly at any temperature. More precisely, we prove that the relative entropy between any evolved state and the equilibrium Gibbs state contracts exponentially fast with an exponent that scales logarithmically with the length of the chain. Our theorem extends a seminal result of Holley and Stroock (Commun Math Phys 123(1):85-93, 1989) to the quantum setting as well as provides an exponential improvement over the non-closure of the gap proved by Brandao and Kastoryano (Commun Math Phys 344(3):915-957, 2016). This has wide-ranging applications to the study of many-body in and out-of-equilibrium quantum systems. Our proof relies upon a recently derived strong decay of correlations for Gibbs states of one dimensional, translation-invariant local Hamiltonians, and tools from the theory of operator spaces.
引用
收藏
页数:51
相关论文
共 67 条
  • [21] Quantum conditional relative entropy and quasi-factorization of the relative entropy
    Capel, Angela
    Lucia, Angelo
    Perez-Garcia, David
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (48)
  • [22] Superadditivity of Quantum Relative Entropy for General States
    Capel, Angela
    Lucia, Angelo
    Perez-Garcia, David
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (07) : 4758 - 4765
  • [23] Logarithmic Sobolev inequalities in non-commutative algebras
    Carbone, Raffaella
    Martinelli, Andrea
    [J]. INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2015, 18 (02)
  • [24] Quasi-factorization of the entropy and logarithmic Sobolev inequalities for Gibbs random fields
    Cesi, F
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2001, 120 (04) : 569 - 584
  • [25] Classification of gapped symmetric phases in one-dimensional spin systems
    Chen, Xie
    Gu, Zheng-Cheng
    Wen, Xiao-Gang
    [J]. PHYSICAL REVIEW B, 2011, 83 (03)
  • [26] Classification of phases for mixed states via fast dissipative evolution
    Coser, Andrea
    Perez-Garcia, David
    [J]. QUANTUM, 2019, 3
  • [27] Stability of Local Quantum Dissipative Systems
    Cubitt, Toby S.
    Lucia, Angelo
    Michalakis, Spyridon
    Perez-Garcia, David
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 337 (03) : 1275 - 1315
  • [28] Min- and Max-Relative Entropies and a New Entanglement Monotone
    Datta, Nilanjana
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (06) : 2816 - 2826
  • [29] GENERATORS OF DYNAMICAL SEMIGROUPS
    DAVIES, EB
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1979, 34 (03) : 421 - 432
  • [30] Davies EB., 1983, Proc. Edinb. Math. Soc, V26, P115, DOI [10.1017/S0013091500028169, DOI 10.1017/S0013091500028169]