Entropy Decay for Davies Semigroups of a One Dimensional Quantum Lattice

被引:4
作者
Bardet, Ivan [1 ]
Capel, Angela [2 ,3 ,4 ]
Gao, Li [2 ,3 ,5 ]
Lucia, Angelo [6 ,7 ]
Perez-Garcia, David [6 ,7 ]
Rouze, Cambyse [2 ,3 ]
机构
[1] Inria Paris, F-75012 Paris, France
[2] Tech Univ Munich, Dept Math, D-85748 Garching, Germany
[3] Munich Ctr Quantum Sci & Technol, D-80799 Munich, Germany
[4] Univ Tubingen, Fachbereich Math, D-72076 Tubingen, Germany
[5] Univ Houston, Dept Math, Houston, TX 77204 USA
[6] Univ Complutense Madrid, Dept Anal Matemat & Matemat Aplicada, Madrid 28040, Spain
[7] Inst Ciencias Matemat, Madrid 28049, Spain
基金
欧洲研究理事会;
关键词
SOBOLEV INEQUALITIES; ENTANGLEMENT; STABILITY; INDEX;
D O I
10.1007/s00220-023-04869-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Given a finite-range, translation-invariant commuting system Hamiltonian on a spin chain, we show that the Davies semigroup describing the reduced dynamics resulting from the joint Hamiltonian evolution of a spin chain weakly coupled to a large heat bath thermalizes rapidly at any temperature. More precisely, we prove that the relative entropy between any evolved state and the equilibrium Gibbs state contracts exponentially fast with an exponent that scales logarithmically with the length of the chain. Our theorem extends a seminal result of Holley and Stroock (Commun Math Phys 123(1):85-93, 1989) to the quantum setting as well as provides an exponential improvement over the non-closure of the gap proved by Brandao and Kastoryano (Commun Math Phys 344(3):915-957, 2016). This has wide-ranging applications to the study of many-body in and out-of-equilibrium quantum systems. Our proof relies upon a recently derived strong decay of correlations for Gibbs states of one dimensional, translation-invariant local Hamiltonians, and tools from the theory of operator spaces.
引用
收藏
页数:51
相关论文
共 67 条
  • [1] Aharonov D, 2009, ACM S THEORY COMPUT, P417
  • [2] On Thermal Stability of Topological Qubit in Kitaev's 4D Model
    Alicki, R.
    Horodecki, M.
    Horodecki, P.
    Horodecki, R.
    [J]. OPEN SYSTEMS & INFORMATION DYNAMICS, 2010, 17 (01) : 1 - 20
  • [3] On thermalization in Kitaev's 2D model
    Alicki, R.
    Fannes, M.
    Horodecki, M.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (06)
  • [4] Simple proof of the detectability lemma and spectral gap amplification
    Anshu, Anurag
    Arad, Itai
    Vidick, Thomas
    [J]. PHYSICAL REVIEW B, 2016, 93 (20)
  • [5] GIBBS STATES OF A ONE DIMENSIONAL QUANTUM LATTICE
    ARAKI, H
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1969, 14 (02) : 120 - &
  • [6] BAILLET M, 1988, COMPOS MATH, V66, P199
  • [7] Bardet I., 2021, Rapid thermalization of spin chain commuting Hamiltonians
  • [8] Bardet I, 2017, Arxiv, DOI arXiv:1710.01039
  • [9] Bardet I, 2018, Arxiv, DOI arXiv:1803.05379
  • [10] Approximate Tensorization of the Relative Entropy for Noncommuting Conditional Expectations
    Bardet, Ivan
    Capel, Angela
    Rouze, Cambyse
    [J]. ANNALES HENRI POINCARE, 2022, 23 (01): : 101 - 140