Multi-year mapping of cropping systems in regions with smallholder farms from Sentinel-2 images in Google Earth engine

被引:5
作者
Qi, Hongwei [1 ]
Qian, Ximin [1 ]
Shang, Songhao [1 ]
Wan, Heyang [1 ]
机构
[1] Tsinghua Univ, Dept Hydraul Engn, State Key Lab Hydrosci & Engn, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Cropping systems; smallholder farms; sentinel-2 time series; phenology index; google earth engine; WATER INDEX NDWI; VEGETATION INDEXES; RANDOM FOREST; SPECTRAL REFLECTANCE; LANDSAT; CROPLANDS; BIOMASS; CHINA; ALGORITHM; FEATURES;
D O I
10.1080/15481603.2024.2309843
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Accurate acquisition of spatial and temporal distribution information for cropping systems is important for agricultural production and food security. The challenges of extracting information about cropping systems in regions with smallholder farms are considerable, given the varied crops, complex cropping patterns, and the fragmentation of cropland with frequent reclamation and abandonment. This study presents a specialized workflow to solve this problem for regions with smallholder farms, which utilizes field samples and Sentinel-2 data to extract cropping system information over multiple years. The workflow involves four steps: 1) processing Sentinel-2 data to simulate crop growth curves with the Savitzky-Golay filter and computing feature variables for classification, including phenology indices, spectral bands, and time series of vegetation indices; 2) mapping annual croplands with one-class support vector machine; 3) mapping various cropping patterns, including single cropping, intercropping, double cropping, multiple harvest, and fallow by decision tree and K-means clustering; and 4) mapping crops with random forest where Jeffries-Matusita distance was used to select appropriate vegetation indices. The workflow was applied in the Hetao irrigation district in Inner Mongolia Autonomous Region, China from 2018 to 2021. The overall accuracies were 0.98, 0.96, and 0.97 for cropland, cropping patterns, and crop type mapping, respectively. The mapping results indicated that the study area has low cropping continuity and is dominated by single cropping patterns. Furthermore, the area of wheat cultivation has decreased, and vegetable cultivation has expanded. Overall, the proposed workflow facilitated the accurate acquisition of cropping system information in regions with smallholder farms and demonstrated the effectiveness of available Sentinel-2 imagery in classifying complex cropping patterns. The workflow is available on Google Earth Engine. HIGHLIGHTS center dot We proposed an integrated method to map cropping systems into smallholder regions. center dot Annual cropland mapping is necessary in regions with complex cropping pattern. center dot The method requires only crop samples as input and is completed on the GEE.</list-item><list-item>Sentinel-2 data can effectively classify cropland, cropping patterns, and crops. center dot The 10-day interval performs better on phenology curves based on Sentinel-2.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Mapping cropping intensity in China using time series Landsat and Sentinel-2 images and Google Earth Engine
    Liu, Luo
    Xiao, Xiangming
    Qin, Yuanwei
    Wang, Jie
    Xu, Xinliang
    Hu, Yueming
    Qiao, Zhi
    REMOTE SENSING OF ENVIRONMENT, 2020, 239
  • [2] Landsat and Sentinel-2 Based Burned Area Mapping Tools in Google Earth Engine
    Roteta, Ekhi
    Bastarrika, Aitor
    Franquesa, Magi
    Chuvieco, Emilio
    REMOTE SENSING, 2021, 13 (04) : 1 - 30
  • [3] Mapping cropping intensity in Huaihe basin using phenology algorithm, all Sentinel-2 and Landsat images in Google Earth Engine
    Pan, Li
    Xia, Haoming
    Yang, Jia
    Niu, Wenhui
    Wang, Ruimeng
    Song, Hongquan
    Guo, Yan
    Qin, Yaochen
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2021, 102
  • [4] Development of a New Phenology Algorithm for Fine Mapping of Cropping Intensity in Complex Planting Areas Using Sentinel-2 and Google Earth Engine
    Guo, Yan
    Xia, Haoming
    Pan, Li
    Zhao, Xiaoyang
    Li, Rumeng
    Bian, Xiqing
    Wang, Ruimeng
    Yu, Chong
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2021, 10 (09)
  • [5] Rapid, robust, and automated mapping of tidal flats in China using time series Sentinel-2 images and Google Earth Engine
    Jia, Mingming
    Wang, Zongming
    Mao, Dehua
    Ren, Chunying
    Wang, Chao
    Wang, Yeqiao
    REMOTE SENSING OF ENVIRONMENT, 2021, 255
  • [6] Monthly composites from Sentinel-1 and Sentinel-2 images for regional major crop mapping with Google Earth Engine
    Chong, Luo
    Huan-jun, Liu
    Lu-ping, Lu
    Zheng-rong, Liu
    Fan-chang, Kong
    Xin-le, Zhang
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2021, 20 (07) : 1944 - 1957
  • [7] Mapping Photovoltaic Panels in Coastal China Using Sentinel-1 and Sentinel-2 Images and Google Earth Engine
    Zhang, Haitao
    Tian, Peng
    Zhong, Jie
    Liu, Yongchao
    Li, Jialin
    REMOTE SENSING, 2023, 15 (15)
  • [8] Mapping Tidal Flats of the Bohai and Yellow Seas Using Time Series Sentinel-2 Images and Google Earth Engine
    Chang, Maoxiang
    Li, Peng
    Li, Zhenhong
    Wang, Houjie
    REMOTE SENSING, 2022, 14 (08)
  • [9] Monthly composites from Sentinel-1 and Sentinel-2 images for regional major crop mapping with Google Earth Engine
    LUO Chong
    LIU Huan-jun
    LU Lü-ping
    LIU Zheng-rong
    KONG Fan-chang
    ZHANG Xin-le
    JournalofIntegrativeAgriculture, 2021, 20 (07) : 1944 - 1957
  • [10] Remotely sensed mapping of the intertidal zone: A Sentinel-2 and Google Earth Engine methodology
    Fitton, James M.
    Rennie, Alistair F.
    Hansom, Jim D.
    Muir, Freya M. E.
    REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2021, 22