Multi-omics fusion based on attention mechanism for survival and drug response prediction in Digestive System Tumors

被引:6
作者
Zhou, Lin [1 ]
Wang, Ning [3 ]
Zhu, Zhengzhi [2 ]
Gao, Hongbo [1 ,4 ,6 ]
Lu, Nannan [3 ,5 ]
Su, Huiping [1 ]
Wang, Xinmiao [1 ]
机构
[1] Univ Sci & Technol China, Sch Informat Sci & Technol, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, West Dist Affiliated Hosp, Dept Breast Ctr, Div Life Sci & Med, Hefei 230026, Anhui, Peoples R China
[3] Chongqing Coll Mobile Commun, Chongqing 400044, Peoples R China
[4] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[5] Univ Sci & Technol China, Affiliated Hosp USTC 1, Dept Oncol, Div Life Sci & Med, Hefei 230001, Anhui, Peoples R China
[6] Univ Sci & Technol China, 96,JinZhai Rd, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Digestive system tumors; Multiomics; Survival; Drug response; CANCER; INHIBITION; NETWORKS;
D O I
10.1016/j.neucom.2023.127168
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent decades, digestive system tumors (DST) have become the primary cause of cancer-related deaths worldwide. Improving tumor prognosis and drug response prediction holds significant importance in personalized medicine. In order to construct an effective and interpretable model that integrates multiple omics data, the Multi-omics Fusion Graph Attention Network (MFGAN) is proposed for survival prediction and drug response prediction in DST. In this method, the similarity matrix of each kind of omics data is calculated and a new graph structure is learned by Graph Transformer (GT). Next, to learn the features of every kind of omics data from the TCGA and GDSC databases, the Graph Attention Network (GAN) is used. Lastly, the View Correlation Discovery Network (VCDN) combines different types of omics data features to predict survival risk and drug response. Among them, the survival prediction results showed an improvement of up to 9% relative to other methods in terms of the c-index metric, with a minimum improvement of 2.6%. In terms of drug response prediction performance, there was an improvement of 4%. The ablation experiment demonstrates MFGAN's feature integration capability, and the functional enrichment analysis for significant genes explains the functional characteristics of the model. Furthermore, the prediction of unknown tumor drug response demonstrates the model's prediction ability. The proposed high-prediction comprehensive model could have important potential value for the personalized medicine of DST.
引用
收藏
页数:11
相关论文
共 68 条
[1]   Optuna: A Next-generation Hyperparameter Optimization Framework [J].
Akiba, Takuya ;
Sano, Shotaro ;
Yanase, Toshihiko ;
Ohta, Takeru ;
Koyama, Masanori .
KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, :2623-2631
[2]  
Ali Mehreen, 2019, Biophys Rev, V11, P31, DOI [10.1007/s12551-018-0446-z, 10.1007/s12551-018-0446-z]
[3]   Global Burden of 5 Major Types of Gastrointestinal Cancer [J].
Arnold, Melina ;
Abnet, Christian C. ;
Neale, Rachel E. ;
Vignat, Jerome ;
Giovannucci, Edward L. ;
McGlynn, Katherine A. ;
Bray, Freddie .
GASTROENTEROLOGY, 2020, 159 (01) :335-+
[4]   Multi-modal advanced deep learning architectures for breast cancer survival prediction [J].
Arya, Nikhilanand ;
Saha, Sriparna .
KNOWLEDGE-BASED SYSTEMS, 2021, 221
[5]   Deep learning for drug response prediction in cancer [J].
Baptista, Delora ;
Ferreira, Pedro G. ;
Rocha, Miguel .
BRIEFINGS IN BIOINFORMATICS, 2021, 22 (01) :360-379
[6]   The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity [J].
Barretina, Jordi ;
Caponigro, Giordano ;
Stransky, Nicolas ;
Venkatesan, Kavitha ;
Margolin, Adam A. ;
Kim, Sungjoon ;
Wilson, Christopher J. ;
Lehar, Joseph ;
Kryukov, Gregory V. ;
Sonkin, Dmitriy ;
Reddy, Anupama ;
Liu, Manway ;
Murray, Lauren ;
Berger, Michael F. ;
Monahan, John E. ;
Morais, Paula ;
Meltzer, Jodi ;
Korejwa, Adam ;
Jane-Valbuena, Judit ;
Mapa, Felipa A. ;
Thibault, Joseph ;
Bric-Furlong, Eva ;
Raman, Pichai ;
Shipway, Aaron ;
Engels, Ingo H. ;
Cheng, Jill ;
Yu, Guoying K. ;
Yu, Jianjun ;
Aspesi, Peter, Jr. ;
de Silva, Melanie ;
Jagtap, Kalpana ;
Jones, Michael D. ;
Wang, Li ;
Hatton, Charles ;
Palescandolo, Emanuele ;
Gupta, Supriya ;
Mahan, Scott ;
Sougnez, Carrie ;
Onofrio, Robert C. ;
Liefeld, Ted ;
MacConaill, Laura ;
Winckler, Wendy ;
Reich, Michael ;
Li, Nanxin ;
Mesirov, Jill P. ;
Gabriel, Stacey B. ;
Getz, Gad ;
Ardlie, Kristin ;
Chan, Vivien ;
Myer, Vic E. .
NATURE, 2012, 483 (7391) :603-607
[7]   RAF-kinase inhibitor protein (RKIP) downregulation in esophageal cancer and its metastases [J].
Birner, Peter ;
Jesch, Bettina ;
Schultheis, Andrea ;
Schoppmann, Sebastian F. .
CLINICAL & EXPERIMENTAL METASTASIS, 2012, 29 (06) :551-559
[8]   The use of the area under the roc curve in the evaluation of machine learning algorithms [J].
Bradley, AP .
PATTERN RECOGNITION, 1997, 30 (07) :1145-1159
[9]   Regulation of phospholipid biosynthesis in the yeast Saccharomyces cerevisiae [J].
Carman, GM ;
Zeimetz, GM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (23) :13293-13296
[10]   Integrating multi-omics data through deep learning for accurate cancer prognosis prediction [J].
Chai, Hua ;
Zhou, Xiang ;
Zhang, Zhongyue ;
Rao, Jiahua ;
Zhao, Huiying ;
Yang, Yuedong .
COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 134