Self-Supervised Facial Motion Representation Learning via Contrastive Subclips

被引:2
|
作者
Sun, Zheng [1 ]
Torrie, Shad A. [1 ]
Sumsion, Andrew W. [1 ]
Lee, Dah-Jye [1 ]
机构
[1] Brigham Young Univ, Dept Elect & Comp Engn, Provo, UT 84602 USA
关键词
facial motion; representation learning; self-supervised learning; biometrics;
D O I
10.3390/electronics12061369
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Facial motion representation learning has become an exciting research topic, since biometric technologies are becoming more common in our daily lives. One of its applications is identity verification. After recording a dynamic facial motion video for enrollment, the user needs to show a matched facial appearance and make a facial motion the same as the enrollment for authentication. Some recent research papers have discussed the benefits of this new biometric technology and reported promising results for both static and dynamic facial motion verification tasks. Our work extends the existing approaches and introduces compound facial actions, which contain more than one dominant facial action in one utterance. We propose a new self-supervised pretraining method called contrastive subclips that improves the model performance with these more complex and secure facial motions. The experimental results show that the contrastive subclips method improves upon the baseline approaches, and the model performance for test data can reach 89.7% average precision.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Motion Sensitive Contrastive Learning for Self-supervised Video Representation
    Ni, Jingcheng
    Zhou, Nan
    Qin, Jie
    Wu, Qian
    Liu, Junqi
    Li, Boxun
    Huang, Di
    COMPUTER VISION - ECCV 2022, PT XXXV, 2022, 13695 : 457 - 474
  • [2] CONTRASTIVE HEARTBEATS: CONTRASTIVE LEARNING FOR SELF-SUPERVISED ECG REPRESENTATION AND PHENOTYPING
    Wei, Crystal T.
    Hsieh, Ming-En
    Liu, Chien-Liang
    Tseng, Vincent S.
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 1126 - 1130
  • [3] Contrastive Self-supervised Representation Learning Using Synthetic Data
    She, Dong-Yu
    Xu, Kun
    INTERNATIONAL JOURNAL OF AUTOMATION AND COMPUTING, 2021, 18 (04) : 556 - 567
  • [4] Contrastive Self-supervised Representation Learning Using Synthetic Data
    Dong-Yu She
    Kun Xu
    International Journal of Automation and Computing, 2021, 18 : 556 - 567
  • [5] Contrastive Self-supervised Representation Learning Using Synthetic Data
    Dong-Yu She
    Kun Xu
    International Journal of Automation and Computing , 2021, (04) : 556 - 567
  • [6] TCGL: Temporal Contrastive Graph for Self-Supervised Video Representation Learning
    Liu, Yang
    Wang, Keze
    Liu, Lingbo
    Lan, Haoyuan
    Lin, Liang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 1978 - 1993
  • [7] Multiple representation contrastive self-supervised learning for pulmonary nodule detection
    Torki, Asghar
    Adibi, Peyman
    Kashani, Hamidreza Baradaran
    KNOWLEDGE-BASED SYSTEMS, 2024, 301
  • [8] Contrastive Self-Supervised Learning With Smoothed Representation for Remote Sensing
    Jung, Heechul
    Oh, Yoonju
    Jeong, Seongho
    Lee, Chaehyeon
    Jeon, Taegyun
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [9] TimeCLR: A self-supervised contrastive learning framework for univariate time series representation
    Yang, Xinyu
    Zhang, Zhenguo
    Cui, Rongyi
    KNOWLEDGE-BASED SYSTEMS, 2022, 245
  • [10] IPCL: ITERATIVE PSEUDO-SUPERVISED CONTRASTIVE LEARNING TO IMPROVE SELF-SUPERVISED FEATURE REPRESENTATION
    Kumar, Sonal
    Phukan, Anirudh
    Sur, Arijit
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 6270 - 6274