Microwave Diagnosis of Bone Fractures: an Artificial Intelligence-Based Approach

被引:2
|
作者
Ghorbani, Fardin [1 ]
Beyraghi, Sina [2 ]
Shabanpour, Javad [3 ]
Lajevardi, Mir Emad [4 ]
Nayyeri, Vahid [5 ]
Chen, Pai-Yen [6 ]
Ramahi, Omar M. [7 ]
机构
[1] Iran Univ Sci & Technol, Sch Elect Engn, Tehran, Iran
[2] Pompeu Fabra Univ, Dept Informat & Commun Technol, Barcelona, Spain
[3] Aalto Univ, Sch Elect Engn, Dept Elect & Nanoengn, Espoo, Finland
[4] Islamic Azad Univ, South Tehran Branch, Dept Elect Engn, Tehran, Iran
[5] Iran Univ Sci & Technol, Sch Adv Technol, Tehran, Iran
[6] Univ Illinois, Dept Elect & Comp Engn, Chicago, IL USA
[7] Univ Waterloo, Dept Elect & Comp Engn, Waterloo, ON, Canada
来源
2023 53RD EUROPEAN MICROWAVE CONFERENCE, EUMC | 2023年
关键词
Bone fracture diagnosis; deep learning; phantom measurement system; scattering parameter; DEVICE;
D O I
10.23919/EuMC58039.2023.10290196
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper evaluates the suitability of a Deep Neural Network (DNN) for diagnosing bone fractures through non-invasive radio frequency wave propagation. The DNN is trained using S-parameter profiles instead of X-ray images to avoid labeling and data collection challenges. The resulting network can classify diverse fracture types (normal, transverse, oblique, and comminuted) and simultaneously determine the size of cracks. Using a portable device, the proposed system provides fast preliminary diagnoses in emergency settings where radiologists are unavailable. The DNN was trained using human body models with varying tissue diameters to simulate different anatomical regions. Numerical results demonstrate successful training without overfitting, and experiments on sheep femur bones in liquid phantom validate the accuracy of fracture classification without harmful X-rays.
引用
收藏
页码:440 / 443
页数:4
相关论文
共 50 条
  • [1] Acute cholecystitis diagnosis in the emergency department: an artificial intelligence-based approach
    Saboorifar, Hossein
    Rahimi, Mohammad
    Babaahmadi, Paria
    Farokhzadeh, Asal
    Behjat, Morteza
    Tarokhian, Aidin
    LANGENBECKS ARCHIVES OF SURGERY, 2024, 409 (01)
  • [2] REUSE SYSTEM - AN ARTIFICIAL INTELLIGENCE-BASED APPROACH
    PRASAD, A
    PARK, EK
    JOURNAL OF SYSTEMS AND SOFTWARE, 1994, 27 (03) : 207 - 221
  • [3] Accurate diagnosis of acute appendicitis in the emergency department: an artificial intelligence-based approach
    Roshanaei, Ghodratollah
    Salimi, Rasoul
    Mahjub, Hossein
    Faradmal, Javad
    Yamini, Ali
    Tarokhian, Aidin
    INTERNAL AND EMERGENCY MEDICINE, 2024, 19 (08) : 2347 - 2357
  • [4] Artificial Intelligence-Based System for Retinal Disease Diagnosis
    Orlova, Ekaterina V.
    ALGORITHMS, 2024, 17 (07)
  • [5] Artificial intelligence-based stethoscope for the diagnosis of aortic stenosis
    Ghanayim, T.
    Bachner-Hinenzon, N.
    Hanuka, D.
    Adler, D.
    Adawi, S.
    Shiran, A.
    EUROPEAN HEART JOURNAL, 2021, 42 : 1588 - 1588
  • [6] Artificial Intelligence-Based Stethoscope for the Diagnosis of Aortic Stenosis
    Ghanayim, Tamer
    Lupu, Lior
    Naveh, Sivan
    Bachner-Hinenzon, Noa
    Adler, Doron
    Adawi, Salim
    Banai, Shmuel
    Shiran, Avinoam
    AMERICAN JOURNAL OF MEDICINE, 2022, 135 (09): : 1124 - 1133
  • [7] Artificial Intelligence-Based Diagnosis of Cardiac and Related Diseases
    Arsalan, Muhammad
    Owais, Muhammad
    Mahmood, Tahir
    Choi, Jiho
    Park, Kang Ryoung
    JOURNAL OF CLINICAL MEDICINE, 2020, 9 (03)
  • [8] Artificial intelligence-based diagnosis of the depth of laryngopharyngeal cancer
    Yumii, Kohei
    Ueda, Tsutomu
    Kawahara, Daisuke
    Chikuie, Nobuyuki
    Taruya, Takayuki
    Hamamoto, Takao
    Takeno, Sachio
    AURIS NASUS LARYNX, 2024, 51 (02) : 417 - 424
  • [9] An Artificial Intelligence-Based Approach With Photoplethysmogram and Heart Rate Variability for Sleep Bruxism Diagnosis
    Eris, Omer
    Recep Bozkurt, Mehmet
    Bulut Eris, Seval
    Bilgin, Cahit
    IEEE ACCESS, 2025, 13 : 40413 - 40428
  • [10] Appendicitis Diagnosis: Ensemble Machine Learning and Explainable Artificial Intelligence-Based Comprehensive Approach
    Gollapalli, Mohammed
    Rahman, Atta
    Kudos, Sheriff A.
    Foula, Mohammed S.
    Alkhalifa, Abdullah Mahmoud
    Albisher, Hassan Mohammed
    Al-Hariri, Mohammed Taha
    Mohammad, Nazeeruddin
    BIG DATA AND COGNITIVE COMPUTING, 2024, 8 (09)