Strict Quantization of Polynomial Poisson Structures

被引:1
作者
Barmeier, Severin [1 ,2 ]
Schmitt, Philipp [3 ]
机构
[1] Univ Cologne, Math Inst, Weyertal 86-90, D-50931 Cologne, Germany
[2] Univ Freiburg, Math Inst, Ernst Zermelo Str 1, D-79104 Freiburg, Germany
[3] Leibniz Univ Hannover, Inst Anal, Welfengarten 1, D-30167 Hannover, Germany
关键词
DEFORMATION QUANTIZATION; STAR PRODUCTS; CONVERGENCE; FORMALITY;
D O I
10.1007/s00220-022-04541-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show how combinatorial star products can be used to obtain strict deformation quantizations of polynomial Poisson structures on R-d, generalizing known results for constant and linear Poisson structures to polynomial Poisson structures of arbitrary degree. We give several examples of nonlinear Poisson structures and construct explicit formal star products whose deformation parameter can be evaluated to any real value of (h) over bar, giving strict quantizations on the space of analytic functions on R-d with infinite radius of convergence. We also address further questions such as continuity of the classical limit (h) over bar -> 0, compatibility with *-involutions, and the existence of positive linear functionals. The latter can be used to realize the strict quantizations as *-algebras of operators on a pre-Hilbert space which we demonstrate in a concrete example.
引用
收藏
页码:1085 / 1127
页数:43
相关论文
共 38 条
  • [1] [Anonymous], 1991, Functional Analysis
  • [2] Multiple zeta values in deformation quantization
    Banks, Peter
    Panzer, Erik
    Pym, Brent
    [J]. INVENTIONES MATHEMATICAE, 2020, 222 (01) : 79 - 159
  • [3] Barmeier S., 2020, ARXIV
  • [4] DEFORMATION THEORY AND QUANTIZATION .1. DEFORMATIONS OF SYMPLECTIC STRUCTURES
    BAYEN, F
    FLATO, M
    FRONSDAL, C
    LICHNEROWICZ, A
    STERNHEIMER, D
    [J]. ANNALS OF PHYSICS, 1978, 111 (01) : 61 - 110
  • [5] Frechet algebraic deformation quantization of the Poincare disk
    Beiser, Svea
    Waldmann, Stefan
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2014, 688 : 147 - 207
  • [6] DIAMOND LEMMA FOR RING THEORY
    BERGMAN, GM
    [J]. ADVANCES IN MATHEMATICS, 1978, 29 (02) : 178 - 218
  • [7] Deformation Quantization for Actions of Kahlerian Lie Groups
    Bieliavsky, Pierre
    Gayral, Victor
    [J]. MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 236 (1115) : 1 - +
  • [8] TOEPLITZ QUANTIZATION OF KAHLER-MANIFOLDS AND GL(N), N-]INFINITY LIMITS
    BORDEMANN, M
    MEINRENKEN, E
    SCHLICHENMAIER, M
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (02) : 281 - 296
  • [9] Formality and star products
    Cattaneo, Alberto S.
    Indelicato, D.
    [J]. POISSON GEOMETRY, DEFORMATION QUANTISATION AND GROUP REPRESENTATIONS, 2005, 323 : 79 - +
  • [10] Conway JB., 1978, FUNCTIONS ONE COMPLE, DOI [10.1007/978-1-4612-6313-5, DOI 10.1007/978-1-4612-6313-5]