Assessing the impact of climatic factors on dengue fever transmission in Bangladesh

被引:0
作者
Miah, Md. Mamun [1 ]
Hossain, Mohammad Belal [2 ,3 ]
Jannat, Sumiya Nur [1 ]
Karim, Md. Rezaul [4 ]
Rahman, Md. Rashedur [1 ]
Arafat, Yasin [1 ]
Pingki, Farjana Haque [2 ]
机构
[1] Noakhali Sci & Technol Univ, Dept Stat, Noakhali 3814, Bangladesh
[2] Noakhali Sci & Technol Univ, Dept Fisheries & Marine Sci, Noakhali 3814, Bangladesh
[3] Griffith Univ, Sch Engn & Built Environm, Brisbane, Qld 4111, Australia
[4] Jahangirnagar Univ, Dept Stat, Dhaka 1342, Bangladesh
关键词
Dengue fever; Environmental factors; Negative binomial regression; AEDES-AEGYPTI; METEOROLOGICAL FACTORS; TEMPERATURE; MODEL; VARIABLES; EPIDEMIC; WEATHER; DISEASE; VECTOR; DHAKA;
D O I
10.1007/s10453-024-09814-0
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Dengue fever is a virus-borne disease spread by mosquitos, and its global prevalence has risen significantly in recent years. The aim of this study was to analyze the impact and association of climatic factors on the spread of dengue incidence in Bangladesh. From January 2011 to December 2021, the study used secondary data on monthly dengue cases and the monthly average of climatic factors. In addition to the descriptive statistics, bivariate analyses of Kendall's tau-b and Spearman's rho have been performed for measuring the association of climatic factors on dengue infection. The generalized linear negative binomial regression model with and without lag was applied to evaluate the impacts of climatic factors on dengue transmission. Results of goodness of fit statistics (AIC,BIC,anddeviance)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(AIC, BIC, and deviance)$$\end{document} showed that NBR model with one month lag best fitted to our data. The model findings revealed that temperature (IRR:1.223,95%CI:1.089-1.374)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(IRR:1.223, 95\% CI:1.089-1.374)$$\end{document}, humidity (IRR:1.131,95%CI:1.103-1.159)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(IRR:1.131, 95\% CI:1.103-1.159)$$\end{document}, precipitation (IRR:1.158,95%CI:1.072-1.253)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(IRR:1.158, 95\% CI:1.072-1.253)$$\end{document}, and air pressure (IRR:5.279,95%CI:1.411-19.046)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(IRR:5.279, 95\% CI:1.411-19.046)$$\end{document} were significantly positively influenced the spread of dengue incidence in Bangladesh. Additionally, dengue fever cases are anticipated to rise by 1.223, 1.131, 1.158, and 5.279 times, respectively, for the everyone-unit increase in the monthly average mean temperature, humidity, precipitation, and air pressure range. The findings on the epidemiological trends of the dengue epidemic and weather changes may interest policymakers and health officials.
引用
收藏
页码:233 / 245
页数:13
相关论文
共 52 条
  • [1] Possible Drivers of the 2019 Dengue Outbreak in Bangladesh: The Need for a Robust Community-Level Surveillance System
    Ahsan, Atik
    Haider, Najmul
    Kock, Richard
    Benfield, Camilla
    [J]. JOURNAL OF MEDICAL ENTOMOLOGY, 2021, 58 (01) : 37 - 39
  • [2] [Anonymous], POWER DATA ACCESS VI
  • [3] [Anonymous], CLIMATE BANGLAPEDIA
  • [4] Impacts of El Nino Southern Oscillation and Indian Ocean Dipole on dengue incidence in Bangladesh
    Banu, Shahera
    Guo, Yuming
    Hu, Wenbiao
    Dale, Pat
    Mackenzie, John S.
    Mengersen, Kerrie
    Tong, Shilu
    [J]. SCIENTIFIC REPORTS, 2015, 5
  • [5] Projecting the impact of climate change on dengue transmission in Dhaka, Bangladesh
    Banu, Shahera
    Hu, Wenbiao
    Guo, Yuming
    Hurst, Cameron
    Tong, Shilu
    [J]. ENVIRONMENT INTERNATIONAL, 2014, 63 : 137 - 142
  • [6] The Incubation Periods of Dengue Viruses
    Chan, Miranda
    Johansson, Michael A.
    [J]. PLOS ONE, 2012, 7 (11):
  • [7] CHEN MJ, 2012, PLOS ONE, V0007
  • [8] Lagged temperature effect with mosquito transmission potential explains dengue variability in southern Taiwan: Insights from a statistical analysis
    Chen, Szu-Chieh
    Liao, Chung-Min
    Chio, Chia-Pin
    Chou, Hsiao-Han
    You, Shu-Han
    Cheng, Yi-Hsien
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2010, 408 (19) : 4069 - 4075
  • [9] Assessing Weather Effects on Dengue Disease in Malaysia
    Cheong, Yoon Ling
    Burkart, Katrin
    Leitao, Pedro J.
    Lakes, Tobia
    [J]. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2013, 10 (12) : 6319 - 6334
  • [10] Impact of meteorological factors on the spatiotemporal patterns of dengue fever incidence
    Chien, Lung-Chang
    Yu, Hwa-Lung
    [J]. ENVIRONMENT INTERNATIONAL, 2014, 73 : 46 - 56