Comparison of joining hole making methods for fiber reinforced FDM 3D printing parts

被引:1
作者
Lv, Wei [1 ]
Qin, Xuda [1 ]
Bao, Zhengwei [1 ]
Guo, Wenchao [1 ]
Meng, Xianming [2 ]
Li, Hao [1 ,3 ]
机构
[1] Tianjin Univ, Key Lab Mech Theory & Equipment Design, Minist Educ, Tianjin, Peoples R China
[2] China Automot Technol & Res Ctr Co Ltd, Tianjin, Peoples R China
[3] Tianjin Univ, Key Lab Mech Theory & Equipment Design, Minist Educ, 135 Yaguan Rd, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
3D printing; fused deposition modeling (FDM); continuous fiber; joining hole; hole quality; damage pattern; COMPOSITES;
D O I
10.1177/09544054231223265
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, continuous fiber reinforced plastic composite fused deposition modeling (FDM) 3D printing and conventional material removal processing methods were combined to investigate the effects of hole-making methods (printing, drilling and helical milling) and fiber filling patterns (solid pattern and rhombic grid pattern) on the quality and mechanical properties of joining holes in printed parts. This study evaluated the cutting forces during hole machining and assessed hole quality based on defect analysis, diameter accuracy, roundness error, and wall morphology, complemented by cost comparisons. It was observed that holes manufactured by conventional material removal methods were of better quality, but were also more costly. Tensile tests were conducted on the bolted joint structures to evaluate the mechanical properties of the joining holes, and scanning electron microscopy (SEM) examinations were performed on the cross-sections of bolted joints to analyze the tensile damage patterns. It was found that helical milled holes exhibit unique damage patterns and greater ultimate tensile displacements due to the existence of fibers directly involved in load bearing at the hole walls. This leads to a significant increase in energy absorption performance. The tensile properties of the structures consisting of specimens with a fiber filling angle of 0 degrees/90 degrees were superior to those with a fiber filling angle of 45 degrees/135 degrees. Additionally, the mechanical properties were found to be slightly better using the rhombic grid pattern than the solid pattern for the same fiber filling density and fiber filling angle. These findings provide valuable insights into the choice of preparation methods for joining holes in 3D printed parts to achieve optimal performance in a variety of engineering applications.
引用
收藏
页码:2075 / 2091
页数:17
相关论文
共 50 条
  • [31] 3D PRINTING OF LARGE PARTS USING MULTIPLE COLLABORATIVE DEPOSITION HEADS - A CASE STUDY WITH FDM
    Leite, Marco
    Ventura, Rodrigo
    Boto, Joao
    Frutuoso, Nuno
    Reis, Luis
    Soares, Bruno
    Ribeiro, Antonio Relogio
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON PROGRESS IN ADDITIVE MANUFACTURING, 2018, : 377 - 382
  • [32] Mechanism and Performance of 3D Printing and Recycling for Continuous Carbon Fiber Reinforced PLA Composites
    Liu T.
    Tian X.
    Zhu W.
    Li D.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2019, 55 (07): : 128 - 134
  • [33] Mechanical Properties of Carbon Fiber Reinforced Materials for 3D Printing of Ankle Foot Orthoses
    Rybarczyk, Justyna
    Gorski, Filip
    Kuczko, Wieslaw
    Wichniarek, Radowslaw
    Siwiec, Sabina
    Vitkovic, Nikola
    Pacurar, Razvan
    ADVANCES IN SCIENCE AND TECHNOLOGY-RESEARCH JOURNAL, 2024, 18 (04) : 191 - 215
  • [34] Preparation and properties of 3D printing continuous fiber reinforced polycarbonate composite prepreg filaments
    Yang L.
    Liu B.
    Liu T.
    Gao Y.
    Tian X.
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2023, 40 (10): : 5654 - 5655
  • [35] Properties of 3D Printing Fiber-Reinforced Geopolymers Based on Interlayer Bonding and Anisotropy
    Lv, Chun
    Shen, Hongtao
    Liu, Jie
    Wu, Dan
    Qu, Enxiang
    Liu, Shuang
    MATERIALS, 2022, 15 (22)
  • [36] Laser-assisted 3D printing of carbon fibre reinforced plastic parts
    Nakagawa, Yuki
    Mori, Ken-ichiro
    Yoshino, Masahiko
    JOURNAL OF MANUFACTURING PROCESSES, 2022, 73 : 375 - 384
  • [37] FDM 3D Printing of high performance composite materials
    Russo, Anna Costanza
    Andreassi, Giustiniano
    Di Girolamo, Achille
    Pappada, Silvio
    Buccoliero, Giuseppe
    Barile, Gianluca
    Veglio, Francesco
    Stornelli, Vincenzo
    2019 IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR INDUSTRY 4.0 AND INTERNET OF THINGS (METROIND4.0&IOT), 2019, : 355 - 359
  • [38] Printing 3D objects with interlocking parts
    Song, Peng
    Fu, Zhongqi
    Liu, Ligang
    Fu, Chi-Wing
    COMPUTER AIDED GEOMETRIC DESIGN, 2015, 35-36 : 137 - 148
  • [39] FDM printing of 3D forms with embedded fibrous materials
    Richter, Christoph
    Schmuelling, Stefan
    Ehrmann, Andrea
    Finsterbusch, Karin
    DESIGN, MANUFACTURING AND MECHATRONICS (ICDMM 2015), 2016, : 961 - 969
  • [40] Mathematical model of extrusion in FDM 3D printing technology
    Kudryashova, O. B.
    Toropkov, N. E.
    Lerner, M. I.
    Vorozhtsov, A. B.
    MATERIALS PHYSICS AND MECHANICS, 2022, 50 (03): : 388 - 400