Long-Wave Infrared Discrete Multitone Free-Space Transmission Using a 9.15-μm Quantum Cascade Laser

被引:8
|
作者
Han, Mengyao [1 ,2 ]
Joharifar, Mahdieh [2 ]
Wang, Muguang [1 ]
Fan, Yuchuan [3 ]
Maisons, Gregory [4 ]
Abautret, Johan [4 ]
Sun, Yan-Ting [2 ]
Teissier, Roland [4 ]
Zhang, Lu [5 ]
Bobrovs, Vjaceslavs [6 ]
Yu, Xianbin [5 ]
Schatz, Richard [2 ]
Popov, Sergei [2 ]
Ozolins, Oskars [2 ]
Pang, Xiaodan [2 ]
机构
[1] Beijing Jiaotong Univ, Inst Lightwave Technol, Key Lab All Opt Network, Adv Telecommun Network, Beijing 100044, Peoples R China
[2] KTH Royal Inst Technol, Dept Appl Phys, Stockholm 10691, Sweden
[3] RISE Res Inst Sweden, Kista, Sweden
[4] mirSense, Palaiseau, France
[5] Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou, Peoples R China
[6] Riga Tech Univ, Inst Telecommun, Riga, Latvia
基金
瑞典研究理事会; 中国国家自然科学基金; 欧盟地平线“2020”;
关键词
Free-space optical communication; long-wave infrared; discrete multitone; quantum cascade laser;
D O I
10.1109/LPT.2023.3257843
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A free-space optical (FSO) transmission system is experimentally demonstrated in the long-wave infrared (LWIR, 9.15 mu m) using a directly modulated quantum cascade laser (DM-QCL) and a commercial mercury-cadmium-telluride infrared photovoltaic detector. At room temperature, the DMQCL is current-modulated by discrete multitone signals pre-processed with bit-/power-loading. Up to 5.1 Gbit/s data rate is achieved with bit error rate performance below the 6.25% overhead hard-decision forward error correction limit of 4.5 x 10(-3), enabled by a frequency domain equalizer. The stability study of the FSO system is also performed at multiple temperature values. This study can provide a valuable reference for future terrestrial and space communications.
引用
收藏
页码:489 / 492
页数:4
相关论文
共 50 条
  • [31] 5-13.5 μm broadband tunable long-wave infrared femtosecond laser
    Liu, Yunpeng
    Qian, Junyu
    Feng, Renyu
    Li, Wenkai
    Li, Yanyan
    Peng, Yujie
    Leng, Yuxin
    APL PHOTONICS, 2024, 9 (08)
  • [32] Optical coatings by ion-beam sputtering deposition for long-wave infrared quantum cascade lasers
    Nguyen, J.
    Yu, J. S.
    Evans, A.
    Slivken, S.
    Razeghi, M.
    APPLIED PHYSICS LETTERS, 2006, 89 (11)
  • [33] Demonstration of Free Space Transmission from a THz Quantum Cascade Laser to a Quantum Well Detector
    Grant, P. D.
    Dudek, R.
    Laframboise, S.
    Graf, M.
    Wasilewski, Z. R.
    Liu, H. C.
    2009 IEEE SENSORS, VOLS 1-3, 2009, : 1096 - 1098
  • [34] Quantum cascade lasers: high-power emission and single-mode operation in the long-wave infrared (λ>6 μm)
    Troccoli, Mariano
    Wang, Xiaojun
    Fan, Jenyu
    OPTICAL ENGINEERING, 2010, 49 (11)
  • [35] Free-Space Gigabit Data Transmission with a Directly Modulated Interband Cascade Laser Epitaxially Grown on Silicon
    Zaminga, S.
    Didier, P.
    Kim, H.
    Diaz-Thomas, D. A.
    Baranov, A. N.
    Rodriguez, J. B.
    Tournie, E.
    Knoetig, H.
    Spitz, O.
    Schwarz, B.
    Cerutti, L.
    Grillot, F.
    2023 IEEE PHOTONICS CONFERENCE, IPC, 2023,
  • [36] Long-Wave IR Quantum Cascade Lasers for emission in the λ=8-12μm spectral region
    Troccoli, Mariano
    Lyakh, Arkadiy
    Fan, Jenyu
    Wang, Xiaojun
    Maulini, Richard
    Tsekoun, Alexei G.
    Go, Rowel
    Patel, C. Kumar N.
    OPTICAL MATERIALS EXPRESS, 2013, 3 (09): : 1546 - 1560
  • [37] Low earth orbit space object differentiation using long-wave infrared polarimetry
    Pohl, Kevin
    Black, Jonathan
    Pitt, Jonathan
    Colbert, Edward
    POLARIZATION: MEASUREMENT, ANALYSIS, AND REMOTE SENSING XIV, 2020, 11412
  • [38] Lattice-Matched and Strain-Compensated Materials for Mid-Wave and Long-Wave Infrared Quantum Cascade Lasers
    Wang, C. A.
    Calawa, D. R.
    Goyal, A. K.
    Menzel, S.
    Capasso, F.
    STATE-OF-THE-ART PROGRAM ON COMPOUND SEMICONDUCTORS 53 (SOTAPOCS 53), 2011, 41 (06): : 139 - 149
  • [39] Free-space and underwater GHz data transmission using AlGaInN laser diode technology
    Najda, S. P.
    Perlin, P.
    Suski, T.
    Marona, L.
    Bockowski, M.
    Leszczynski, M.
    Wisniewski, P.
    Czernecki, R.
    Kucharski, R.
    Targowski, G.
    Watson, S.
    Kelly, A. E.
    ATMOSPHERIC PROPAGATION XIII, 2016, 9833
  • [40] Long wave infrared (10 μm) free space optical communication system
    Pavelchek, A
    Trissel, R
    Plante, J
    Umbrasas, S
    FREE-SPACE LASER COMMUNICATION AND ACTIVE LASER ILLUMINATION III, 2004, 5160 : 247 - 252