Long-Wave Infrared Discrete Multitone Free-Space Transmission Using a 9.15-μm Quantum Cascade Laser

被引:8
作者
Han, Mengyao [1 ,2 ]
Joharifar, Mahdieh [2 ]
Wang, Muguang [1 ]
Fan, Yuchuan [3 ]
Maisons, Gregory [4 ]
Abautret, Johan [4 ]
Sun, Yan-Ting [2 ]
Teissier, Roland [4 ]
Zhang, Lu [5 ]
Bobrovs, Vjaceslavs [6 ]
Yu, Xianbin [5 ]
Schatz, Richard [2 ]
Popov, Sergei [2 ]
Ozolins, Oskars [2 ]
Pang, Xiaodan [2 ]
机构
[1] Beijing Jiaotong Univ, Inst Lightwave Technol, Key Lab All Opt Network, Adv Telecommun Network, Beijing 100044, Peoples R China
[2] KTH Royal Inst Technol, Dept Appl Phys, Stockholm 10691, Sweden
[3] RISE Res Inst Sweden, Kista, Sweden
[4] mirSense, Palaiseau, France
[5] Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou, Peoples R China
[6] Riga Tech Univ, Inst Telecommun, Riga, Latvia
基金
中国国家自然科学基金; 瑞典研究理事会; 欧盟地平线“2020”;
关键词
Free-space optical communication; long-wave infrared; discrete multitone; quantum cascade laser;
D O I
10.1109/LPT.2023.3257843
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A free-space optical (FSO) transmission system is experimentally demonstrated in the long-wave infrared (LWIR, 9.15 mu m) using a directly modulated quantum cascade laser (DM-QCL) and a commercial mercury-cadmium-telluride infrared photovoltaic detector. At room temperature, the DMQCL is current-modulated by discrete multitone signals pre-processed with bit-/power-loading. Up to 5.1 Gbit/s data rate is achieved with bit error rate performance below the 6.25% overhead hard-decision forward error correction limit of 4.5 x 10(-3), enabled by a frequency domain equalizer. The stability study of the FSO system is also performed at multiple temperature values. This study can provide a valuable reference for future terrestrial and space communications.
引用
收藏
页码:489 / 492
页数:4
相关论文
共 21 条