Prognostic prediction models for clinical outcomes in patients diagnosed with visceral leishmaniasis: protocol for a systematic review

被引:2
作者
Wilson, James [1 ,2 ]
Chowdhury, Forhad [1 ,2 ]
Hassan, Shermarke [1 ,2 ]
Harriss, Elinor K. [3 ]
Alves, Fabiana [4 ]
Dahal, Prabin [1 ,2 ]
Stepniewska, Kasia [1 ,2 ]
Guerin, Philippe J. [1 ,2 ]
机构
[1] Univ Oxford, Infect Dis Data Observ IDDO, Oxford, England
[2] Univ Oxford, Ctr Trop Med & Global Hlth, Oxford, England
[3] Univ Oxford, Bodleian Hlth Care Lib, Oxford, England
[4] Drugs Neglected Dis Initiat, Geneva, Switzerland
来源
BMJ OPEN | 2023年 / 13卷 / 10期
基金
比尔及梅琳达.盖茨基金会;
关键词
Prognosis; Neglected Diseases; INFECTIOUS DISEASES; Systematic Review; STATISTICS & RESEARCH METHODS; Protocols & guidelines; BIAS; RISK; TOOL;
D O I
10.1136/bmjopen-2023-075597
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Introduction Visceral leishmaniasis (VL) is a neglected tropical disease responsible for many thousands of preventable deaths each year. Symptomatic patients often struggle to access effective treatment, without which death is the norm. Risk prediction tools support clinical teams and policymakers in identifying high-risk patients who could benefit from more intensive management pathways. Investigators interested in using their clinical data for prognostic research should first identify currently available models that are candidates for validation and possible updating. Addressing these needs, we aim to identify, summarise and appraise the available models predicting clinical outcomes in VL patients. Methods and analysis We will include studies that have developed, validated or updated prognostic models predicting future clinical outcomes in patients diagnosed with VL. Systematic reviews and meta-analyses that include eligible studies are also considered for review. Conference abstracts and educational theses are excluded. Data extraction, appraisal and reporting will follow current methodological guidelines. Ovid Embase; Ovid MEDLINE; the Web of Science Core Collection, SciELO and LILACS are searched from database inception to 1 March 2023 using terms developed for the identification of prediction models, and with no language restriction. Screening, data extraction and risk of bias assessment will be performed in duplicate with discordance resolved by a third independent reviewer. Risk of bias will be assessed using the Prediction model Risk Of Bias ASsessment Tool (PROBAST). Tables and figures will compare and contrast key model information, including source data, participants, model development and performance measures, and risk of bias. We will consider the strengths, limitations and clinical applicability of the identified models. Ethics and dissemination Ethics approval is not required for this review. The systematic review and all accompanying data will be submitted to an open-access journal. Findings will also be disseminated through the research group's website (www.iddo.org/research-themes/visceral-leishmaniasis) and social media channels.
引用
收藏
页数:6
相关论文
共 34 条
  • [21] PROBAST: A Tool to Assess Risk of Bias and Applicability of Prediction Model Studies: Explanation and Elaboration
    Moons, Karel G. M.
    Wolff, Robert F.
    Riley, Richard D.
    Whiting, Penny F.
    Westwood, Marie
    Collins, Gary S.
    Reitsma, Johannes B.
    Kleijnen, Jos
    Mallett, Sue
    [J]. ANNALS OF INTERNAL MEDICINE, 2019, 170 (01) : W1 - W33
  • [22] Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies: The CHARMS Checklist
    Moons, Karel G. M.
    de Groot, Joris A. H.
    Bouwmeester, Walter
    Vergouwe, Yvonne
    Mallett, Susan
    Altman, Douglas G.
    Reitsma, Johannes B.
    Collins, Gary S.
    [J]. PLOS MEDICINE, 2014, 11 (10)
  • [23] The increasing incidence of visceral leishmaniasis relapse in South Sudan: A retrospective analysis of field patient data from 2001-2018
    Naylor-Leyland, Gabriel
    Collin, Simon M.
    Gatluak, Francis
    den Boer, Margriet
    Alves, Fabiana
    Mullahzada, Abdul Wasay
    Ritmeijer, Koert
    [J]. PLOS NEGLECTED TROPICAL DISEASES, 2022, 16 (08):
  • [24] Prognostic models for the clinical management of malaria and its complications: a systematic review
    Njim, Tsi
    Tanyitiku, Bayee Swiri
    [J]. BMJ OPEN, 2019, 9 (11):
  • [25] The PRISMA 2020 statement: an updated guideline for reporting systematic reviews
    Page, Matthew J.
    McKenzie, Joanne E.
    Bossuyt, Patrick M.
    Boutron, Isabelle
    Hoffmann, Tammy C.
    Mulrow, Cynthia D.
    Shamseer, Larissa
    Tetzlaff, Jennifer M.
    Akl, Elie A.
    Brennan, Sue E.
    Chou, Roger
    Glanville, Julie
    Grimshaw, Jeremy M.
    Hrobjartsson, Asbjorn
    Lalu, Manoj M.
    Li, Tianjing
    Loder, Elizabeth W.
    Mayo-Wilson, Evan
    McDonald, Steve
    McGuinness, Luke A.
    Stewart, Lesley A.
    Thomas, James
    Tricco, Andrea C.
    Welch, Vivian A.
    Whiting, Penny
    Moher, David
    [J]. BMJ-BRITISH MEDICAL JOURNAL, 2021, 372
  • [26] Systematic review of prediction models for pulmonary tuberculosis treatment outcomes in adults
    Peetluk, Lauren S.
    Ridolfi, Felipe M.
    Rebeiro, Peter F.
    Liu, Dandan
    Rolla, Valeria C.
    Sterling, Timothy R.
    [J]. BMJ OPEN, 2021, 11 (03):
  • [27] A guide to systematic review and meta-analysis of prognostic factor studies
    Riley, Richard D.
    Moons, Karel G. M.
    Snell, Kym I. E.
    Ensor, Joie
    Hooft, Lotty
    Altman, Douglas G.
    Hayden, Jill
    Collins, Gary S.
    Debray, Thomas P. A.
    [J]. BMJ-BRITISH MEDICAL JOURNAL, 2019, 364
  • [28] Transparent reporting of multivariable prediction models for individual prognosis or diagnosis: checklist for systematic reviews and meta-analyses (TRIPOD-SRMA)
    Snell, Kym I. E.
    Levis, Brooke
    Damen, Johanna A. A.
    Dhiman, Paula
    Debray, Thomas P. A.
    Hooft, Lotty
    Reitsma, Johannes B.
    Moons, Karel G. M.
    Collins, Gary S.
    Riley, Richard
    [J]. BMJ-BRITISH MEDICAL JOURNAL, 2023, 381
  • [29] ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions
    Sterne, Jonathan A. C.
    Hernan, Miguel A.
    Reeves, Barnaby C.
    Savovic, Jelena
    Berkman, Nancy D.
    Viswanathan, Meera
    Henry, David
    Altman, Douglas G.
    Ansari, Mohammed T.
    Boutron, Isabelle
    Carpenter, James R.
    Chan, An-Wen
    Churchill, Rachel
    Deeks, Jonathan J.
    Hrobjartsson, Asbjorn
    Kirkham, Jamie
    Juni, Peter
    Loke, Yoon K.
    Pigott, Theresa D.
    Ramsay, Craig R.
    Regidor, Deborah
    Rothstein, Hannah R.
    Sandhu, Lakhbir
    Santaguida, Pasqualina L.
    Schunemann, Holger J.
    Shea, Beverly
    Shrier, Ian
    Tugwell, Peter
    Turner, Lucy
    Valentine, Jeffrey C.
    Waddington, Hugh
    Waters, Elizabeth
    Wells, George A.
    Whiting, Penny F.
    Higgins, Julian P. T.
    [J]. BMJ-BRITISH MEDICAL JOURNAL, 2016, 355
  • [30] Prognosis Research Strategy (PROGRESS) 3: Prognostic Model Research
    Steyerberg, Ewout W.
    Moons, Karel G. M.
    van der Windt, Danielle A.
    Hayden, Jill A.
    Perel, Pablo
    Schroter, Sara
    Riley, Richard D.
    Hemingway, Harry
    Altman, Douglas G.
    [J]. PLOS MEDICINE, 2013, 10 (02)