Biomimetic Corneal Stroma for Scarless Corneal Wound Healing via Structural Restoration and Microenvironment Modulation

被引:15
作者
Huang, Jianan [1 ,2 ,3 ]
Jiang, Tuoying [2 ,3 ]
Li, Jinying [2 ,3 ,4 ]
Qie, Jiqiao [1 ]
Cheng, Xiaoyu [1 ]
Wang, Yiyao [1 ]
Zhou, Tinglian [1 ]
Liu, Jia [2 ,3 ]
Han, Haijie [1 ,5 ]
Yao, Ke [1 ]
Yu, Luyang [2 ,3 ]
机构
[1] Zhejiang Univ, Eye Ctr, Affiliated Hosp 2, Sch Med,Zhejiang Prov Key Lab Ophthalmol,Zhejiang, Hangzhou 310009, Peoples R China
[2] Zhejiang Univ, MOE Lab Biosyst Homeostasis & Protect, Hangzhou 310058, Peoples R China
[3] Zhejiang Univ, Coll Life Sci, iCell Biotechnol Regenerat Biomed Lab, Hangzhou 310058, Peoples R China
[4] Lishui Univ, Coll Tradit Chinese Med & Hlth Ind, Lishui 323000, Peoples R China
[5] Third Mil Med Univ, State Key Lab Trauma Burn & Combined Injury, Chongqing 400038, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
biomimetic corneal stroma; immunomodulatory; regenerative medicine; scarless corneal repair; stem cell differentiation; AMNIOTIC EPITHELIAL-CELLS; STEM-CELLS; IN-VITRO; THERAPY; KERATOCYTES; HYDROGELS; FIBROSIS; EXPRESSION; PHENOTYPE; INJECTION;
D O I
10.1002/adhm.202302889
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Corneal injury-induced stromal scarring causes the most common subtype of corneal blindness, and there is an unmet need to promote scarless corneal wound healing. Herein, a biomimetic corneal stroma with immunomodulatory properties is bioengineered for scarless corneal defect repair. First, a fully defined serum-free system is established to derive stromal keratocytes (hAESC-SKs) from a current Good Manufacturing Practice (cGMP)-grade human amniotic epithelial stem cells (hAESCs), and RNA-seq is used to validate the phenotypic transition. Moreover, hAESC-SKs are shown to possess robust immunomodulatory properties in addition to the keratocyte phenotype. Inspired by the corneal stromal extracellular matrix (ECM), a photocurable gelatin-based hydrogel is fabricated to serve as a scaffold for hAESC-SKs for bioengineering of a biomimetic corneal stroma. The rabbit corneal defect model is used to confirm that this biomimetic corneal stroma rapidly restores the corneal structure, and effectively reshapes the tissue microenvironment via proteoglycan secretion to promote transparency and inhibition of the inflammatory cascade to alleviate fibrosis, which synergistically reduces scar formation by approximate to 75% in addition to promoting wound healing. Overall, the strategy proposed here provides a promising solution for scarless corneal defect repair. Herein, the biomimetic corneal stroma with induced keratocytes and extracellular matrix-based hydrogel can promptly restore the corneal defect without sutures or fibrin glue. Moreover, it dramatically reshapes the tissue microenvironment by proteoglycan secretion to promote transparency and inflammation inhibition to alleviate stromal scarring. It presents a promising strategy to improve the prognosis of corneal injuries and reduce corneal blindness.image
引用
收藏
页数:18
相关论文
共 76 条
[1]   Corneal injury: Clinical and molecular aspects [J].
Barrientez, Brayden ;
Nicholas, Sarah E. ;
Whelchel, Amy ;
Sharif, Rabab ;
Hjortdal, Jesper ;
Karamichos, Dimitrios .
EXPERIMENTAL EYE RESEARCH, 2019, 186
[2]   Human limbal biopsy-derived stromal stem cells prevent corneal scarring [J].
Basu, Sayan ;
Hertsenberg, Andrew J. ;
Funderburgh, Martha L. ;
Burrow, Michael K. ;
Mann, Mary M. ;
Du, Yiqin ;
Lathrop, Kira L. ;
Syed-Picard, Fatima N. ;
Adams, Sheila M. ;
Birk, David E. ;
Funderburgh, James L. .
SCIENCE TRANSLATIONAL MEDICINE, 2014, 6 (266)
[3]   Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis [J].
Bourne, Rupert R. A. ;
Flaxman, Seth R. ;
Braithwaite, Tasanee ;
Cicinelli, Maria V. ;
Das, Aditi ;
Jonas, Jost B. ;
Keeffe, Jill ;
Kempen, John H. ;
Leasher, Janet ;
Limburg, Hans ;
Naidoo, Kovin ;
Pesudovs, Konrad ;
Resnikoff, Serge ;
Silvester, Alex ;
Stevens, Gretchen A. ;
Tahhan, Nina ;
Wong, Tien Y. ;
Taylor, Hugh R. .
LANCET GLOBAL HEALTH, 2017, 5 (09) :E888-E897
[4]   Effects of extracellular matrix viscoelasticity on cellular behaviour [J].
Chaudhuri, Ovijit ;
Cooper-White, Justin ;
Janmey, Paul A. ;
Mooney, David J. ;
Shenoy, Vivek B. .
NATURE, 2020, 584 (7822) :535-546
[5]   Bio-orthogonally crosslinked hyaluronate-collagen hydrogel for suture-free corneal defect repair [J].
Chen, Fang ;
Le, Peter ;
Fernandes-Cunha, Gabriella M. ;
Heilshorn, Sarah C. ;
Myung, David .
BIOMATERIALS, 2020, 255
[6]   Translational Applications of Hydrogels [J].
Correa, Santiago ;
Grosskopf, Abigail K. ;
Hernandez, Hector Lopez ;
Chan, Doreen ;
Yu, Anthony C. ;
Stapleton, Lyndsay M. ;
Appel, Eric A. .
CHEMICAL REVIEWS, 2021, 121 (18) :11385-11457
[7]   Biocompatibility Evolves: Phenomenology to Toxicology to Regeneration [J].
Crawford, Lars ;
Wyatt, Meghan ;
Bryers, James ;
Ratner, Buddy .
ADVANCED HEALTHCARE MATERIALS, 2021, 10 (11)
[8]   Cell-laden and orthogonal-multilayer tissue-engineered corneal stroma induced by a mechanical collagen microenvironment and transplantation in a rabbit model [J].
Cui, Zekai ;
Zeng, Qiaolang ;
Liu, Shiwei ;
Zhang, Yanan ;
Zhu, Deliang ;
Guo, Yonglong ;
Xie, Mengyuan ;
Mathew, Sanjana ;
Cai, Dongqing ;
Zhang, Jun ;
Chen, Jiansu .
ACTA BIOMATERIALIA, 2018, 75 :183-199
[9]   Inflammation and metabolism in tissue repair and regeneration [J].
Eming, Sabine A. ;
Wynn, Thomas A. ;
Martin, Paul .
SCIENCE, 2017, 356 (6342) :1026-1030
[10]   Influence of Biochemical Cues in Human Corneal Stromal Cell Phenotype [J].
Fernandez-Perez, Julia ;
Ahearne, Mark .
CURRENT EYE RESEARCH, 2019, 44 (02) :135-146