Finite time blowup for the nonlinear Schrödinger equation with a delta potential

被引:0
作者
Hauser, Brandon [1 ]
Holmes, John [1 ]
O'Keefe, Eoghan [1 ]
Raynor, Sarah [1 ]
Yu, Chuanyang [1 ]
机构
[1] Wake Forest Univ, Dept Math & Stat, Winston Salem, NC 27109 USA
来源
INVOLVE, A JOURNAL OF MATHEMATICS | 2023年 / 16卷 / 04期
关键词
well-posedness; initial value problem; Schrodinger equation; NLS; Cauchy problem; Sobolev spaces;
D O I
10.2140/involve.2023.16.591
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Cauchy problem for the nonlinear Schrodinger equation with a delta potential, which can be written as iut + Au + (|u|2 sigma + c8)u = 0. We show that under certain conditions, the L infinity norm of the solution tends to infinity in finite time. In order to prove this, we study the associated Lagrangian and Hamil-tonian, and derive an estimate of the associated variance. We also derive several con-servation laws which a classical solution of the Cauchy problem must also satisfy.
引用
收藏
页码:591 / 604
页数:16
相关论文
共 9 条
  • [1] On the Dirac delta as initial condition for nonlinear Schrodinger equations
    Banica, V.
    Vega, L.
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2008, 25 (04): : 697 - 711
  • [2] Long-Time Asymptotics for Solutions of the NLS Equation with a Delta Potential and Even Initial Data: Announcement of Results
    Deift, Percy
    Park, Jungwoon
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2011, 96 (1-3) : 143 - 156
  • [3] The nonlinear Schrodinger equation on the half-line
    Fokas, AS
    Its, AR
    Sung, LY
    [J]. NONLINEARITY, 2005, 18 (04) : 1771 - 1822
  • [4] CLASS OF NON-LINEAR SCHRODINGER EQUATIONS .1. CAUCHY-PROBLEM, GENERAL-CASE
    GINIBRE, J
    VELO, G
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1979, 32 (01) : 1 - 32
  • [5] Soliton splitting by external delta Potentials
    Holmer, J.
    Marzuola, J.
    Zworski, M.
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2007, 17 (04) : 349 - 367
  • [6] DYNAMICS OF SOLITONS IN NEARLY INTEGRABLE SYSTEMS
    KIVSHAR, YS
    MALOMED, BA
    [J]. REVIEWS OF MODERN PHYSICS, 1989, 61 (04) : 763 - 915
  • [7] Sulem C., 1999, The Nonlinear Schrodinger Equation: Self-Focusing and Wave Collapse
  • [8] Tao T., 2006, NONLINEAR DISPERSIVE, V106, DOI DOI 10.1090/CBMS/106
  • [9] ZAKHAROV VE, 1972, SOV PHYS JETP-USSR, V34, P62