Self-supervised learning of hologram reconstruction using physics consistency

被引:47
作者
Huang, Luzhe [1 ,2 ,3 ]
Chen, Hanlong [1 ,2 ,3 ]
Liu, Tairan [1 ,2 ,3 ]
Ozcan, Aydogan [1 ,2 ,3 ,4 ]
机构
[1] Univ Calif Los Angeles, Elect & Comp Engn Dept, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Bioengn Dept, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Calif Nanosyst Inst CNSI, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, David Geffen Sch Med, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
INFORMED NEURAL-NETWORKS; PHASE RETRIEVAL; IMAGE-RECONSTRUCTION; DIGITAL HOLOGRAPHY; HIGH-RESOLUTION; MICROSCOPY; FRAMEWORK; FIELD; ENHANCEMENT;
D O I
10.1038/s42256-023-00704-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Existing applications of deep learning in computational imaging and microscopy mostly depend on supervised learning, requiring large-scale, diverse and labelled training data. The acquisition and preparation of such training image datasets is often laborious and costly, leading to limited generalization to new sample types. Here we report a self-supervised learning model, termed GedankenNet, that eliminates the need for labelled or experimental training data, and demonstrate its effectiveness and superior generalization on hologram reconstruction tasks. Without prior knowledge about the sample types, the self-supervised learning model was trained using a physics-consistency loss and artificial random images synthetically generated without any experiments or resemblance to real-world samples. After its self-supervised training, GedankenNet successfully generalized to experimental holograms of unseen biological samples, reconstructing the phase and amplitude images of different types of object using experimentally acquired holograms. Without access to experimental data, knowledge of real samples or their spatial features, GedankenNet achieved complex-valued image reconstructions consistent with the wave equation in free space. The GedankenNet framework also shows resilience to random, unknown perturbations in the physical forward model, including changes in the hologram distances, pixel size and illumination wavelength. This self-supervised learning of image reconstruction creates new opportunities for solving inverse problems in holography, microscopy and computational imaging. Microscopic imaging and holography aim to decrease reliance on labelled experimental training data, which can introduce biases, be time-consuming and costly to prepare, and may lack real-world diversity. Huang et al. develop a physics-driven self-supervised model that eliminates the need for labelled or experimental training data, demonstrating superior generalization on the reconstruction of experimental holograms of various samples.
引用
收藏
页码:895 / +
页数:27
相关论文
共 100 条
[1]   Unsupervised hyperspectral stimulated Raman microscopy image enhancement: denoising and segmentation via one-shot deep learning [J].
Abdolghader, Pedram ;
Ridsdale, Andrew ;
Grammatikopoulos, Tassos ;
Resch, Gavin ;
Legare, Francois ;
Stolow, Albert ;
Pegoraro, Adrian F. ;
Tamblyn, Isaac .
OPTICS EXPRESS, 2021, 29 (21) :34205-34219
[2]   Roadmap on Digital Holography-Based Quantitative Phase Imaging [J].
Balasubramani, Vinoth ;
Kujawinska, Malgorzata ;
Allier, Cedric ;
Anand, Vijayakumar ;
Cheng, Chau-Jern ;
Depeursinge, Christian ;
Hai, Nathaniel ;
Juodkazis, Saulius ;
Kalkman, Jeroen ;
Kus, Arkadiusz ;
Lee, Moosung ;
Magistretti, Pierre J. ;
Marquet, Pierre ;
Ng, Soon Hock ;
Rosen, Joseph ;
Park, Yong Keun ;
Ziemczonok, Michal .
JOURNAL OF IMAGING, 2021, 7 (12)
[3]   On the use of deep learning for computational imaging [J].
Barbastathis, George ;
Ozcan, Aydogan ;
Situ, Guohai .
OPTICA, 2019, 6 (08) :921-943
[4]   Fourier Phase Retrieval: Uniqueness and Algorithms [J].
Bendory, Tamir ;
Beinert, Robert ;
Eldar, Yonina C. .
COMPRESSED SENSING AND ITS APPLICATIONS, 2017, :55-91
[5]   Deep phase decoder: self-calibrating phase microscopy with an untrained deep neural network [J].
Bostan, Emrah ;
Heckel, Reinhard ;
Chen, Michael ;
Kellman, Michael ;
Waller, Laura .
OPTICA, 2020, 7 (06) :559-562
[6]  
Boyd N., 2018, BioRxiv, DOI [DOI 10.1101/267096, 10.1101/267096]
[7]   Deep learning-based digital in-line holographic microscopy for high resolution with extended field of view [J].
Byeon, Hyeokjun ;
Go, Taesik ;
Lee, Sang Joon .
OPTICS AND LASER TECHNOLOGY, 2019, 113 :77-86
[8]   eFIN: Enhanced Fourier Imager Network for Generalizable Autofocusing and Pixel Super-Resolution in Holographic Imaging [J].
Chen, Hanlong ;
Huang, Luzhe ;
Liu, Tairan ;
Ozcan, Aydogan .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2023, 29 (04)
[9]   Fourier Imager Network (FIN): A deep neural network for hologram reconstruction with superior external generalization [J].
Chen, Hanlong ;
Huang, Luzhe ;
Liu, Tairan ;
Ozcan, Aydogan .
LIGHT-SCIENCE & APPLICATIONS, 2022, 11 (01)
[10]   Three-dimensional residual channel attention networks denoise and sharpen fluorescence microscopy image volumes [J].
Chen, Jiji ;
Sasaki, Hideki ;
Lai, Hoyin ;
Su, Yijun ;
Liu, Jiamin ;
Wu, Yicong ;
Zhovmer, Alexander ;
Combs, Christian A. ;
Rey-Suarez, Ivan ;
Chang, Hung-Yu ;
Huang, Chi Chou ;
Li, Xuesong ;
Guo, Min ;
Nizambad, Srineil ;
Upadhyaya, Arpita ;
Lee, Shih-Jong J. ;
Lucas, Luciano A. G. ;
Shroff, Hari .
NATURE METHODS, 2021, 18 (06) :678-+