Sharp Effective Finite-Field Nullstellensatz

被引:0
|
作者
Moshkovitz, Guy [1 ,2 ]
Yu, Jeffery [3 ]
机构
[1] CUNY, Baruch Coll, Dept Math, New York, NY 10010 USA
[2] CUNY, Grad Ctr, New York, NY 10010 USA
[3] Univ Maryland, College Pk, MD 20742 USA
来源
AMERICAN MATHEMATICAL MONTHLY | 2023年 / 130卷 / 08期
关键词
11T06; 03F20; LOWER BOUNDS;
D O I
10.1080/00029890.2023.2230810
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The (weak) Nullstellensatz over finite fields says that if P-1,..., P-m are n-variate degree- d polynomials with no common zero over a finite field F then there are polynomials R-1,..., R-m such that R1P1 + center dot center dot center dot + RmPm = 1. Green and Tao [14, Proposition 9.1] used a regularity lemma to obtain an effective proof, showing that the degrees of the polynomials Ri can be bounded independently of n, though with an Ackermann-type dependence on the other parameters m, d, and |F|. In this paper we use the polynomial method to give a proof with a degree bound of md(|F| - 1). We also show that the dependence on each of the parameters is the best possible up to an absolute constant. We further include a generalization, offered by Pete L. Clark, from finite fields to arbitrary subsets in arbitrary fields, provided the polynomials Pi take finitely many values on said subset.
引用
收藏
页码:720 / 727
页数:8
相关论文
共 50 条
  • [1] Finite type and the effective Nullstellensatz
    Heier, Gordon
    COMMUNICATIONS IN ALGEBRA, 2008, 36 (08) : 2947 - 2957
  • [2] ARITHMETIC IN A FINITE-FIELD
    WILLETT, M
    MATHEMATICS OF COMPUTATION, 1980, 35 (152) : 1353 - 1359
  • [3] Finite-Field Consensus
    Pasqualetti, Fabio
    Borra, Domenica
    Bulbo, Francesco
    2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 2629 - 2634
  • [4] On the finite-field transition dipole moment calculations by effective Hamiltonian methods
    A. Zaitsevskii
    A.P. Pychtchev
    The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics, 1998, 4 : 303 - 308
  • [5] On the finite-field transition dipole moment calculations by effective Hamiltonian methods
    Zaitsevskii, A
    Pychtchev, AP
    EUROPEAN PHYSICAL JOURNAL D, 1998, 4 (03): : 303 - 308
  • [6] On the finite-field transition dipole moment calculations by effective Hamiltonian methods
    Laboratory of Molecular Structure and Quantum Mechanics, Chemical Department, M. Lomonosov Moscow State University, 119899 Moscow, Russia
    Eur. Phys. J. D, 3 (303-308):
  • [7] DECOUPLING IN FINITE-FIELD THEORIES
    MCKEON, G
    RAJPOOT, S
    PHYSICS LETTERS B, 1985, 151 (3-4) : 229 - 234
  • [8] BIVECTORS OVER A FINITE-FIELD
    MACDOUGALL, JA
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1981, 24 (04): : 489 - 490
  • [9] ON NORMAL BASES OF A FINITE-FIELD
    SIDELNIKOV, VM
    MATHEMATICS OF THE USSR-SBORNIK, 1987, 133 (3-4): : 485 - 494
  • [10] FUNCTIONS AND CORRESPONDENCES IN A FINITE-FIELD
    CARLITZ, L
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 83 (02) : 139 - 165