Cationic Lignin as an Efficient and Biorenewable Antimicrobial Material

被引:10
作者
Cerda, Karen Acurio [1 ]
Kathol, Mark [1 ]
Purohit, Gunjan [2 ]
Zamani, Ehsan [1 ]
Morton, Martha D. [3 ,4 ]
Khalimonchuk, Oleh [2 ,5 ,6 ]
Saha, Rajib [1 ]
Dishari, Shudipto Konika [1 ]
机构
[1] Univ Nebraska Lincoln, Dept Chem & Biomol Engn, Lincoln, NE 68588 USA
[2] Univ Nebraska Lincoln, Dept Biochem, Lincoln, NE 68588 USA
[3] Univ Nebraska Lincoln, Dept Chem, Lincoln, NE 68588 USA
[4] Univ Nebraska Lincoln, Nebraska Ctr Integrated Biomol Commun, Lincoln, NE USA
[5] Univ Nebraska Lincoln, Nebraska Redox Biol Ctr, Lincoln, NE 68588 USA
[6] Fred & Pamela Buffett Canc Ctr, Omaha, NE 68198 USA
基金
美国国家科学基金会;
关键词
lignin; polymer; biomass valorization; bacteria; antimicrobial; antibiotic-resistant; sustainable; biorenewable; ANTIBIOTIC-RESISTANT BACTERIA; ATOMIC-FORCE MICROSCOPY; CONJUGATED POLYELECTROLYTES; ANTIBACTERIAL ACTIVITY; DIRECT VISUALIZATION; SURFACE-CHARGE; NILE RED; MEMBRANE; COLI; NANOPARTICLES;
D O I
10.1021/acssuschemeng.3c01414
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this work, we utilized an inexpensive and naturallyabundantpolymer lignin and functionalized it with quaternary ammonium groupsto yield a cationic antimicrobial, QAL. As opposed to non-cationicalkali lignin (AL), a relatively low concentration of cationic QAL(& SIM;25-150 & mu;g/mL) exerted strong bacteriostaticand bacteriolytic effects against both wild-type and kanamycin (kan)-resistant E. coli (& SIM;90% dead cells, & SIM;90-100%growth inhibition with a 1 h treatment). Treatment with 25 & mu;g/mLQAL exposed lipid (Nile red staining) and roughened the bacterialcell envelope (from & SIM;4.9 to 12.9 nm). Inner membrane damagewas also evident as an increased amount of leakage of the cytoplasmicenzyme was evidenced by the increase in treatment time and QAL concentration.Additionally, a Langmuir-like monolayer coverage of QAL onto bacteriawas identified, which agreed with zeta potential measurements andsuggested electrostatic binding as the major mechanism of antimicrobialaction of QAL. Lastly, QAL showed no/minimal cytotoxicity againsthuman embryonic kidney cells (90-100% cell viability) withinthe concentration range (0-300 & mu;g/mL) in which QAL killedand completely inhibited the growth of bacteria. The development ofsuch efficient, biorenewable antimicrobial materials from lignin canpave the way for effectively addressing antibiotic resistance andenabling biomass valorization simultaneously. We demonstrate the action mechanism ofcationic lignin,a green, effective, affordable, and scalable antimicrobial capableof killing antibiotic-resistant bacteria, while presenting a uniquelignocellulosic biomass valorization approach.
引用
收藏
页码:10364 / 10379
页数:16
相关论文
共 139 条
[11]   Preparation and Characterization of Mn0.4Zn0.6Fe2O4 Nanoparticles Supported on Dead Cells of Yarrowia lipolytica as a Novel and Efficient Adsorbent/Biosorbent Composite for the Removal of Azo Food Dyes: Central Composite Design Optimization Study [J].
Asfaram, Arash ;
Ghaedi, Mehrorang ;
Dashtian, Kheibar ;
Ghezelbash, Gholam Reza .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (04) :4549-4563
[12]   Green Ambient-Dried Aerogels with a Facile pH-Tunable Surface Charge for Adsorption of Cationic and Anionic Contaminants with High Selectivity [J].
Atoufi, Zhaleh ;
Ciftci, Goksu Cinar ;
Reid, Michael S. ;
Larsson, Per A. ;
Wagberg, Lars .
BIOMACROMOLECULES, 2022, 23 (11) :4934-4947
[13]   Fluorescence-based in situ assay to probe the viability and growth kinetics of surface-adhering and suspended recombinant bacteria [J].
Avalos Vizcarra, Ima ;
Emge, Philippe ;
Miermeister, Philipp ;
Chabria, Mamta ;
Konradi, Rupert ;
Vogel, Viola ;
Moeller, Jens .
BIOINTERPHASES, 2013, 8 :1-9
[14]   A concise review of current lignin production, applications, products and their environmental impact [J].
Bajwa, D. S. ;
Pourhashem, G. ;
Ullah, A. H. ;
Bajwa, S. G. .
INDUSTRIAL CROPS AND PRODUCTS, 2019, 139
[15]   Encapsulation of Bacterial Spores in Nanoorganized Polyelectrolyte Shells [J].
Balkundi, Shantanu S. ;
Veerabadran, Nalinkanth G. ;
Eby, D. Matthew ;
Johnson, Glenn R. ;
Lvov, Yuri M. .
LANGMUIR, 2009, 25 (24) :14011-14016
[16]   Adhesion of gram-negative bacteria onto α-Al2O3 nanoparticles: A study of surface behaviour and interaction mechanism [J].
Borthakur, Priyakshree ;
Hussain, Najrul ;
Darabdhara, Gitashree ;
Boruah, Puma K. ;
Sharma, Bhagyasmeeta ;
Borthakur, Prandeep ;
Yadav, Archana ;
Das, Manash R. .
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2018, 6 (04) :3933-3941
[17]   Effects of surfactant on Bacillus mucilaginosus adsorption characteristics during vanadium bioleaching process [J].
Cai, Zhenlei ;
Wang, Yue ;
Zhang, Yimin ;
Tian, Hongqing .
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2022, 10 (06)
[18]   Tuning cell surface charge in E. coli with conjugated oligoelectrolytes [J].
Catania, Chelsea ;
Thomas, Alexander W. ;
Bazan, Guillermo C. .
CHEMICAL SCIENCE, 2016, 7 (03) :2023-2029
[19]   Analysis of clinical parameters and echocardiography as predictors of fatal pediatric myocarditis [J].
Chang, Yi-Jung ;
Hsiao, Hsiang-Ju ;
Hsia, Shao-Hsuan ;
Lin, Jainn-Jim ;
Hwang, Mao-Sheng ;
Chung, Hung-Tao ;
Chen, Chyi-Liang ;
Huang, Yhu-Chering ;
Tsai, Ming-Han .
PLOS ONE, 2019, 14 (03)
[20]   Cationic Lignin-Based Hyperbranched Polymers to Circumvent Drug Resistance in Pseudomonas Keratitis [J].
Chee, Pei Lin ;
Owh, Cally ;
Venkatesh, Mayandi ;
Periayah, Mercy Halleluyah ;
Zhang, Zheng ;
Yew, Pek Yin Michelle ;
Ruan, Huajun ;
Lakshminarayanan, Rajamani ;
Kai, Dan ;
Loh, Xian Jun .
ACS BIOMATERIALS SCIENCE & ENGINEERING, 2021, 7 (09) :4659-4668