From mitochondria to cells to humans: Targeting bioenergetics in aging and disease

被引:2
作者
Berry, Brandon J. [1 ]
Pharaoh, Gavin A. [2 ,3 ]
Marcinek, David J. [1 ,2 ,3 ]
机构
[1] Univ Washington, Dept Lab Med & Pathol, Med Ctr, 1959 NE Pacific St, Seattle, WA 98195 USA
[2] Univ Washington, Dept Radiol, South Lake Union Campus,850 Republican St,Brotman, Seattle, WA 98109 USA
[3] Inst Stem Cell & Regenerat Med, South Lake Union Campus,850 Republican St, Brotman, Seattle, WA 98109 USA
关键词
Metabolism; Protonmotive force; Membrane potential; Respiration; Aging; Bioenergetics; LIFE-SPAN; ELEGANS;
D O I
10.1016/j.biocel.2023.106391
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In vivo control over metabolism is at the cutting edge of biomedical research. The particulars of mitochondrial function are especially important to understand in vivo to progress metabolic therapies that will be relevant for diseases of aging. Understanding the differences between how mitochondria function in vitro versus in vivo will be a necessary challenge to overcome to achieve mitochondrial medicine. In this article we outline how dis-coveries in invertebrate models will be informative for understanding the basic biology of mitochondria to streamline translation to mammals and eventually to humans. Further, we highlight examples of how what is known about mitochondria in vitro is translatable to in vivo models and, in some cases, to human diseases.
引用
收藏
页数:4
相关论文
共 50 条
[21]   Brain aging, Alzheimer's disease, and mitochondria [J].
Swerdlow, Russell H. .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 2011, 1812 (12) :1630-1639
[22]   Targeting senescent cells in aging and COVID-19: from cellular mechanisms to therapeutic opportunities [J].
Yu, Yuan ;
Lin, Kaixuan ;
Wu, Haoyu ;
Hu, Mingli ;
Yang, Xuejie ;
Wang, Jie ;
Grillari, Johannes ;
Chen, Jiekai .
CELL REGENERATION, 2024, 13 (01)
[23]   Secondary CoQ10 deficiency, bioenergetics unbalance in disease and aging [J].
Navas, Placido ;
Cascajo, Maria, V ;
Alcazar-Fabra, Maria ;
Hernandez-Camacho, Juan D. ;
Sanchez-Cuesta, Ana ;
Rodriguez, Ana Belen Cortes ;
Ballesteros-Simarro, Manuel ;
Arroyo-Luque, Antonio ;
Rodriguez-Aguilera, Juan Carlos ;
Fernandez-Ayala, Daniel J. M. ;
Brea-Calvo, Gloria ;
Lopez-Lluch, Guillermo ;
Santos-Ocana, Carlos .
BIOFACTORS, 2021, 47 (04) :551-569
[24]   Differential mitochondrial bioenergetics and cellular resilience in astrocytes, hepatocytes, and fibroblasts from aging baboons [J].
Adekunbi, Daniel A. ;
Huber, Hillary F. ;
Li, Cun ;
Nathanielsz, Peter W. ;
Cox, Laura A. ;
Salmon, Adam B. .
GEROSCIENCE, 2024, 46 (5) :4443-4459
[25]   The aging of ER-mitochondria communication: A journey from undifferentiated to aged cells [J].
Morgado-Caceres, Pablo ;
Liabeuf, Gianella ;
Calle, Ximena ;
Briones, Lautaro ;
Riquelme, Jaime A. ;
Bravo-Sagua, Roberto ;
Parra, Valentina .
FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2022, 10
[26]   Conserved regulators of cognitive aging: From worms to humans [J].
Arey, Rachel N. ;
Murphy, Coleen T. .
BEHAVIOURAL BRAIN RESEARCH, 2017, 322 :299-310
[27]   Plant-derived mitochondria-targeting cysteine-rich peptide modulates cellular bioenergetics [J].
Kam, Antony ;
Loo, Shining ;
Dutta, Bamaprasad ;
Sze, Siu Kwan ;
Tam, James P. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2019, 294 (11) :4000-4011
[28]   Targeting aging for disease modification in osteoarthritis [J].
Colins, John A. ;
Diekman, Brian O. ;
Loeser, Richard F. .
CURRENT OPINION IN RHEUMATOLOGY, 2018, 30 (01) :101-107
[29]   Impaired quality control of mitochondria: Aging from a new perspective [J].
Weber, Tobias A. ;
Reichert, Andreas S. .
EXPERIMENTAL GERONTOLOGY, 2010, 45 (7-8) :503-511
[30]   Targeting mitochondria for ovarian aging: new insights into mechanisms and therapeutic potential [J].
Wang, Zi-Han ;
Wang, Zhen-Jing ;
Liu, Huai-Chao ;
Wang, Chen-Yu ;
Wang, Yu-Qi ;
Yue, Yang ;
Zhao, Chen ;
Wang, Guoyun ;
Wan, Ji-Peng .
FRONTIERS IN ENDOCRINOLOGY, 2024, 15