GAUSSIAN ANALYTIC FUNCTIONS OF BOUNDED MEAN OSCILLATION

被引:4
作者
Nishry, Alon [1 ]
Paquette, Elliot [2 ]
机构
[1] Tel Aviv Univ, Sch Math Sci, Dept Pure Math, Tel Aviv, Israel
[2] McGill Univ, Dept Math, Montreal, PQ, Canada
来源
ANALYSIS & PDE | 2023年 / 16卷 / 01期
基金
欧洲研究理事会;
关键词
function theory on the disc; bounded mean oscillation; Gaussian analytic functions; Bloch; probability; RANDOM HANKEL; SERIES; NORM;
D O I
10.2140/apde.2023.16.89
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider random analytic functions given by a Taylor series with independent, centered complex Gaussian coefficients. We give a new sufficient condition for such a function to have bounded mean oscillation. Under a mild regularity assumption this condition is optimal. We give as a corollary a new bound for the norm of a random Gaussian Hankel matrix. Finally, we construct some exceptional Gaussian analytic functions which in particular disprove the conjecture that a random analytic function with bounded mean oscillation always has vanishing mean oscillation.
引用
收藏
页码:89 / 117
页数:31
相关论文
共 28 条
[1]   A Few Remarks on the Operator Norm of Random Toeplitz Matrices [J].
Adamczak, Radoslaw .
JOURNAL OF THEORETICAL PROBABILITY, 2010, 23 (01) :85-108
[2]  
ANDERSON JM, 1974, J REINE ANGEW MATH, V270, P12
[3]  
Billard P., 1963, Stud. Math, V22, P309
[4]   Spectral measure of large random Hankel, Markov and Toeplitz matrices [J].
Bryc, W ;
Dembo, A ;
Jiang, TF .
ANNALS OF PROBABILITY, 2006, 34 (01) :1-38
[5]  
de Leeuw K., 1977, C. R. Acad. Sci. Paris Ser. A-B, V285, pA1001
[6]  
Duren PL., 1970, Theory of Hp Spaces
[7]  
FEFFERMAN C, 1972, ACTA MATH-UPPSALA, V129, P137, DOI 10.1007/BF02392215
[8]   A characterization of random Bloch functions [J].
Gao, FC .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 252 (02) :959-966
[9]  
Girela D., 2001, Univ. Joensuu Dept. Math. Rep. Ser., V4, P61
[10]   CRITERIA FOR MEMBERSHIP OF BLOCH SPACE AND ITS SUBSPACE, BMOA [J].
HOLLAND, F ;
WALSH, D .
MATHEMATISCHE ANNALEN, 1986, 273 (02) :317-335