Symmetric matrix representations of truncated Toeplitz operators on finite dimensional spaces

被引:1
作者
O'Loughlin, Ryan [1 ]
机构
[1] Univ Leeds, Sch Math, Leeds LS2 9JT, England
基金
英国工程与自然科学研究理事会;
关键词
Complex symmetric operator; Truncated Toeplitz operator; Toeplitz matrix; Model space; UNITARY EQUIVALENCE;
D O I
10.1016/j.laa.2023.02.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we answer an open conjecture concerning com-plex symmetric matrices and truncated Toeplitz operators. We study matrix representations of truncated Toeplitz oper-ators with respect to orthonormal bases which are invariant under a canonical conjugation map. In particular, we deter-mine necessary and sufficient conditions for when a symmetric matrix is the matrix representation of a truncated Toeplitz operator with respect to a given conjugation invariant or-thonormal basis. We specialise our result to the case when the conjugation invariant orthonormal basis is a modified Clark basis. With this specialisation, we answer an open conjecture in the negative, and show not every unitary equivalence be-tween a complex symmetric matrix and a truncated Toeplitz operator arises from modified Clark basis representations. We pose a new refined conjecture for how to realise a model theory for symmetric matrices through the use of truncated Toeplitz operators, and we show this conjecture is equivalent to a spec-ified system of polynomial equations being satisfied.(c) 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons .org /licenses /by /4 .0/).
引用
收藏
页码:11 / 28
页数:18
相关论文
共 28 条
[1]   Symbols of truncated Toeplitz operators [J].
Baranov, Anton ;
Bessonov, Roman ;
Kapustin, Vladimir .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (12) :3437-3456
[2]   Bounded symbols and Reproducing Kernel Thesis for truncated Toeplitz operators [J].
Baranov, Anton ;
Chalendar, Isabelle ;
Fricain, Emmanuel ;
Mashreghi, Javad ;
Timotin, Dan .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (10) :2673-2701
[3]   Introduction to PT-symmetric quantum theory [J].
Bender, CM .
CONTEMPORARY PHYSICS, 2005, 46 (04) :277-292
[4]   Fredholmness and Compactness of Truncated Toeplitz and Hankel Operators [J].
Bessonov, R. V. .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2015, 82 (04) :451-467
[5]   Spectral properties of truncated Toeplitz operators by equivalence after extension [J].
Camara, M. Cristina ;
Partington, Jonathan R. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 433 (02) :762-784
[6]  
CIMA J.A., 2000, MATH SURVEYS MONOGR, V79
[7]   Truncated Toeplitz Operators: Spatial Isomorphism, Unitary Equivalence, and Similarity [J].
Cima, Joseph A. ;
Garcia, Stephan Ramon ;
Ross, William T. ;
Wogen, Warren R. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2010, 59 (02) :595-620
[8]   TRUNCATED TOEPLITZ OPERATORS ON FINITE DIMENSIONAL SPACES [J].
Cima, Joseph A. ;
Ross, William T. ;
Wogen, Warren R. .
OPERATORS AND MATRICES, 2008, 2 (03) :357-369
[9]  
Duren P.L., 1970, PURE APPL MATH, V38
[10]  
Garcia S. R., 2018, Finite Blaschke Products and Their Connections