p-adic vertex operator algebras

被引:1
作者
Franc, Cameron [1 ]
Mason, Geoffrey [2 ]
机构
[1] McMaster Univ, Dept Math & Stat, Hamilton, ON, Canada
[2] UC Santa Cruz, Dept Math, Santa Cruz, CA 95064 USA
基金
加拿大自然科学与工程研究理事会;
关键词
p-adic vertex operator algebras; p-adic Banach spaces; Serre p-adic modular forms; MODULAR-INVARIANCE; TRACE FUNCTIONS; INTEGRAL FORMS; FREE BOSON;
D O I
10.1007/s40993-023-00433-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We postulate axioms for a chiral half of a nonarchimedean 2-dimensional bosonic conformal field theory, that is, a vertex operator algebra in which a p-adic Banach space replaces the traditional Hilbert space. We study some consequences of our axioms leading to the construction of various examples, including p-adic commutative Banach rings and p-adic versions of the Virasoro, Heisenberg, and the Moonshine module vertex operator algebras. Serre p-adic modular forms occur naturally in some of these examples as limits of classical 1-point functions.
引用
收藏
页数:41
相关论文
共 46 条
[1]  
[Anonymous], 1973, Lecture Notes in Mathematics
[2]  
[Anonymous], 1996, Contemporary Mathematics
[3]  
[Anonymous], 1989, INFINITE DIMENSIONAL
[4]   Modular moonshine, III [J].
Borcherds, RE .
DUKE MATHEMATICAL JOURNAL, 1998, 93 (01) :129-154
[5]   Modular moonshine .2. [J].
Borcherds, RE ;
Ryba, AJE .
DUKE MATHEMATICAL JOURNAL, 1996, 83 (02) :435-459
[6]  
Bosch S., 1984, Grundlehren der Mathematischen Wissenschaften Fundamental Principles of Mathematical Sciences, V261
[7]   A Self-Dual Integral Form of the Moonshine Module [J].
Carnahan, Scott .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2019, 15
[8]  
Curtis R. T., 1985, ATLAS FINITE GROUPS
[9]  
Di Francesco P., 1996, CONFORMAL FIELD THEO, DOI [10.1007/978-1-4612-2256-9, DOI 10.1007/978-1-4612-2256-9]
[10]   Determinants for integral forms in lattice type vertex operator algebras [J].
Dong, Chongying ;
Griess, Robert L., Jr. .
JOURNAL OF ALGEBRA, 2020, 558 :327-335