A NOTE ON r-CIRCULANT MATRICES INVOLVING GENERALIZED NARAYANA NUMBERS

被引:0
作者
Pes, Marko [1 ]
Pucanovic, Zoran [1 ]
机构
[1] Univ Belgrade, Fac Civil Engn, Dept Math, Bulevar Kralja Aleksandra 73, Belgrade 11120, Serbia
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2023年 / 17卷 / 04期
关键词
Narayana's cows sequence; r-circulant matrix; Euclidean and spectral norm; eigenvalues; FIBONACCI; INVERSES; DETERMINANTS; JACOBSTHAL; NORMS;
D O I
10.7153/jmi-2023-17-84
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In order to further connect structured matrices and integer sequences, r -circulant matrices involving the generalized Narayana numbers are considered. Estimates for spectral norms bounds of such matrices are presented and their eigenvalues are determined. Moreover, the conditions under which the circulant matrix and the skew circulant matrix involving generalized Narayana numbers are invertible are given. In particular, it is shown that every circulant matrix with Narayana numbers is necessarily invertible.
引用
收藏
页码:1293 / 1310
页数:18
相关论文
共 29 条
[1]  
ALLOUCHE J. P, 1996, Articles of 3rd Computer Music Conference JIM, V96, P2
[2]   On circulant like matrices properties involving Horadam, Fibonacci, Jacobsthal and Pell numbers [J].
Andrade, Enide ;
Carrasco-Olivera, Dante ;
Manzaneda, Cristina .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 617 (617) :100-120
[3]   THE GENERALIZED ORDER-k NARAYANA'S COWS NUMBERS [J].
Bilgici, Goksal .
MATHEMATICA SLOVACA, 2016, 66 (04) :795-802
[4]   The Moore-Penrose pseudoinverse of an arbitrary, square, k-circulant matrix [J].
Boman, EC .
LINEAR & MULTILINEAR ALGEBRA, 2002, 50 (02) :175-179
[5]   Determinants and inverses of r-circulant matrices associated with a number sequence [J].
Bozkurt, Durmus ;
Tam, Tin-Yau .
LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (10) :2079-2088
[6]   Determinants and inverses of circulant matrices with Jacobsthal and Jacobsthal-Lucas Numbers [J].
Bozkurt, Durmus ;
Tam, Tin-Yau .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (02) :544-551
[7]   Invertibility of some circulant matrices [J].
Bustomi ;
Barra, A. .
ASIAN MATHEMATICAL CONFERENCE 2016 (AMC 2016), 2017, 893
[8]   The inverses of some circulant matrices [J].
Carmona, A. ;
Encinas, A. M. ;
Gago, S. ;
Jimenez, M. J. ;
Mitjana, M. .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 270 :785-793
[9]  
Cline R. E., 1974, Linear Algebra and Its Applications, V8, P25, DOI 10.1016/0024-3795(74)90004-4
[10]  
Davis P.J., 1970, Circulant Matrices