THE HYPERBOLIC-PARABOLIC CHEMOTAXIS SYSTEM FOR VASCULOGENESIS: GLOBAL DYNAMICS AND RELAXATION LIMIT TOWARD A KELLER-SEGEL MODEL

被引:9
作者
Crin-Barat, Timothee [1 ]
He, Qingyo [2 ]
Shou, Ling-yun [2 ]
机构
[1] Fdn Deusto, Chair Computat Math, Bilbao 48007, Basque Country, Spain
[2] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
基金
中国国家自然科学基金; 欧洲研究理事会;
关键词
hyperbolic-parabolic chemotaxis; vascular network; Keller-Segel; critical regularity; global well-posedness; optimal time-decay rate; relaxation limit; NAVIER-STOKES EQUATIONS; COMPRESSIBLE EULER EQUATIONS; ASYMPTOTIC-BEHAVIOR; SMOOTH SOLUTIONS; DIFFUSION WAVES; WELL-POSEDNESS; OPTIMAL DECAY; CONVERGENCE; EXISTENCE; STABILITY;
D O I
10.1137/22M1477295
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An Euler type hyperbolic-parabolic system of chemotactic aggregation describing vascular network formation is investigated in the critical regularity setting. For initial data near a constant equilibrium state, the global well-posedness of the classical solution to the Cauchy problem with general pressure laws is proved in critical hybrid Besov spaces, and qualitative regularity estimates uniform with respect to the relaxation parameter are established. Then, the optimal time-decay rates of the global solution are analyzed under an additional regularity assumption on the initial data. Furthermore, the relaxation limit of the hyperbolic-parabolic system toward a parabolic-elliptic Keller-Segel model is justified rigorously. It is shown that as the relaxation parameter tends to zero, the solutions of the hyperbolic-parabolic chemotaxis system converge to the solutions of the Keller -Segel model at an explicit rate of convergence. Our approach relies on the introduction of new effective unknowns in low frequencies and the construction of a Lyapunov functional in the spirit of that of Beauchard and Zuazua [Arch. Ration. Mech. Anal., 199 (2011), pp. 177-227] to treat the high frequencies.
引用
收藏
页码:4445 / 4492
页数:48
相关论文
共 65 条
[21]   EXISTENCE AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO A QUASI-LINEAR HYPERBOLIC-PARABOLIC MODEL OF VASCULOGENESIS [J].
Di Russo, Cristiana ;
Sepe, Alice .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (02) :748-776
[22]   Optimal critical mass in the two dimensional Keller-Segel model in R2 [J].
Dolbeault, J ;
Perthame, B .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (09) :611-616
[23]   Approximation of hyperbolic models for chemosensitive movement [J].
Filbet, F ;
Shu, CW .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 27 (03) :850-872
[24]   Percolation, morphogenesis, and Burgers dynamics in blood vessels formation [J].
Gamba, A ;
Ambrosi, D ;
Coniglio, A ;
de Candia, A ;
Di Talia, S ;
Giraudo, E ;
Serini, G ;
Preziosi, L ;
Bussolino, F .
PHYSICAL REVIEW LETTERS, 2003, 90 (11) :4
[25]   Decay of Dissipative Equations and Negative Sobolev Spaces [J].
Guo, Yan ;
Wang, Yanjin .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (12) :2165-2208
[26]   Existence of Global Strong Solutions in Critical Spaces for Barotropic Viscous Fluids [J].
Haspot, Boris .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 202 (02) :427-460
[27]   Growth factors - Formation of endothelial cell networks [J].
Helmlinger, G ;
Endo, M ;
Ferrara, N ;
Hlatky, L ;
Jain, RK .
NATURE, 2000, 405 (6783) :139-141
[28]   Uniqueness of weak solutions of the Navier-Stokes equations of multidimensional, compressible flow [J].
Hoff, D .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 37 (06) :1742-1760
[29]   Nonlinear stability of phase transition steady states to a hyperbolic-parabolic system modeling vascular networks [J].
Hong, Guangyi ;
Peng, Hongyun ;
Wang, Zhi-An ;
Zhu, Changjiang .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2021, 103 (04) :1480-1514
[30]   Convergence to the barenblatt solution for the compressible euler equations with damping and vacuum [J].
Huang, FM ;
Marcati, P ;
Pan, RH .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2005, 176 (01) :1-24