Therapeutic supramolecular polymers: Designs and applications

被引:24
作者
Wang, Han [1 ,2 ]
Mills, Jason [1 ,2 ]
Sun, Boran [1 ,2 ]
Cui, Honggang [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] Johns Hopkins Univ, Dept Chem & Biomol Engn, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Inst NanoBioTechnol, Baltimore, MD 21218 USA
[3] Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA
[4] Johns Hopkins Univ, Dept Oncol, Sch Med, Baltimore, MD 21205 USA
[5] Johns Hopkins Univ, Sidney Kimmel Comprehens Canc Ctr, Sch Med, Baltimore, MD 21205 USA
[6] Johns Hopkins Univ, Sch Med, Wilmer Eye Inst, Ctr Nanomed, Baltimore, MD 21287 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
Supramolecular polymers; Self-assembly; Drug delivery; Nanomedicine; Hydrogels; PEPTIDE-AMPHIPHILE NANOFIBERS; AGGREGATION-INDUCED EMISSION; SMALL-MOLECULE; BIOACTIVE SCAFFOLDS; SUSTAINED-RELEASE; SOFT MATTER; CANCER; DELIVERY; NANOPARTICLES; HYDROGELS;
D O I
10.1016/j.progpolymsci.2023.101769
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The self-assembly of low-molecular-weight building motifs into supramolecular polymers has unlocked a new realm of materials with distinct properties and tremendous potential for advancing medical practices. Leveraging the reversible and dynamic nature of non-covalent interactions, these supramolecular polymers exhibit inherent responsiveness to their microenvironment, physiological cues, and biomolecular signals, making them uniquely suited for diverse biomedical applications. In this review, we intend to explore the principles of design, synthesis methodologies, and strategic developments that underlie the creation of supramolecular polymers as carriers for therapeutics, contributing to the treatment and prevention of a spectrum of human diseases. We delve into the principles underlying monomer design, emphasizing the pivotal role of non-covalent interactions, directionality, and reversibility. Moreover, we explore the intricate balance between thermodynamics and kinetics in supramolecular polymerization, illuminating strategies for achieving controlled sizes and distributions. Categorically, we examine their exciting biomedical applications: individual polymers as discrete carriers for therapeutics, delving into their interactions with cells, and in vivo dynamics; and supramolecular polymeric hydrogels as injectable depots, with a focus on their roles in cancer immunotherapy, sustained drug release, and regenerative medicine. As the field continues to burgeon, harnessing the unique attributes of therapeutic supramolecular polymers holds the promise of transformative impacts across the biomedical landscape.(c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:24
相关论文
共 300 条
[1]   Self-assembling peptide-based building blocks in medical applications [J].
Acar, Handan ;
Srivastava, Samanvaya ;
Chung, Eun Ji ;
Schnorenberg, Mathew R. ;
Barrett, John C. ;
LaBelle, James L. ;
Tirrell, Matthew .
ADVANCED DRUG DELIVERY REVIEWS, 2017, 110 :65-79
[2]   Future of Supramolecular Copolymers Unveiled by Reflecting on Covalent Copolymerization [J].
Adelizzi, Beatrice ;
Van Zee, Nathan J. ;
de Windt, Lafayette N. J. ;
Palmans, Anja R. A. ;
Meijer, E. W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (15) :6110-6121
[3]   PULMONARY DELIVERY OF THERAPEUTIC PEPTIDES AND PROTEINS [J].
ADJEI, A ;
GUPTA, P .
JOURNAL OF CONTROLLED RELEASE, 1994, 29 (03) :361-373
[4]   Functional Supramolecular Polymers [J].
Aida, T. ;
Meijer, E. W. ;
Stupp, S. I. .
SCIENCE, 2012, 335 (6070) :813-817
[5]   Bioactive scaffolds with enhanced supramolecular motion promote recovery from spinal cord injury [J].
Alvarez, Z. ;
Kolberg-Edelbrock, A. N. ;
Sasselli, I. R. ;
Ortega, J. A. ;
Qiu, R. ;
Syrgiannis, Z. ;
Mirau, P. A. ;
Chen, F. ;
Chin, S. M. ;
Weigand, S. ;
Kiskinis, E. ;
Stupp, S., I .
SCIENCE, 2021, 374 (6569) :848-+
[6]   Artificial extracellular matrix scaffolds of mobile molecules enhance maturation of human stem cell-derived neurons [J].
Alvarez, Zaida ;
Ortega, J. Alberto ;
Sato, Kohei ;
Sasselli, Ivan R. ;
Kolberg-Edelbrock, Alexandra N. ;
Qiu, Ruomeng ;
Marshall, Kelly A. ;
Nguyen, Thao Phuong ;
Smith, Cara S. ;
Quinlan, Katharina A. ;
Papakis, Vasileios ;
Syrgiannis, Zois ;
Sather, Nicholas A. ;
Musumeci, Chiara ;
Engel, Elisabeth ;
Stupp, Samuel I. ;
Kiskinis, Evangelos .
CELL STEM CELL, 2023, 30 (02) :219-+
[7]   Supramolecular filaments for concurrent ACE2 docking and enzymatic activity silencing enable coronavirus capture and infection prevention [J].
Anderson, Caleb F. ;
Wang, Qiong ;
Stern, David ;
Leonard, Elissa K. ;
Sun, Boran ;
Fergie, Kyle J. ;
Choi, Chang-yong ;
Spangler, Jamie B. ;
Villano, Jason ;
Pekosz, Andrew ;
Brayton, Cory F. ;
Jia, Hongpeng ;
Cui, Honggang .
MATTER, 2023, 6 (02) :583-604
[8]   Collagen-Binding Peptide-Enabled Supramolecular Hydrogel Design for Improved Organ Adhesion and Sprayable Therapeutic Delivery [J].
Anderson, Caleb F. ;
Chakroun, Rami W. ;
Grimmett, Maria E. ;
Domalewski, Christopher J. ;
Wang, Feihu ;
Cui, Honggang .
NANO LETTERS, 2022, 22 (10) :4182-4191
[9]   Interface-Enrichment-Induced Instability and Drug-Loading-Enhanced Stability in Inhalable Delivery of Supramolecular Filaments [J].
Anderson, Caleb F. ;
Chakroun, Rami W. ;
Su, Hao ;
Mitrut, Roxana E. ;
Cui, Honggang .
ACS NANO, 2019, 13 (11) :12957-12968
[10]   Inhalable nanotherapeutics to improve treatment efficacy for common lung diseases [J].
Anderson, Caleb F. ;
Grimmett, Maria E. ;
Domalewski, Christopher J. ;
Cui, Honggang .
WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY, 2020, 12 (01)