Unsupervised Domain Transfer with Conditional Invertible Neural Networks

被引:2
作者
Dreher, Kris K. [1 ,2 ]
Ayala, Leonardo [1 ,3 ]
Schellenberg, Melanie [1 ,4 ]
Huebner, Marco [1 ,4 ]
Noelke, Jan-Hinrich [1 ,4 ]
Adler, Tim J. [1 ]
Seidlitz, Silvia [1 ,4 ,5 ,6 ,7 ]
Sellner, Jan [1 ,4 ,5 ,9 ,10 ]
Studier-Fischer, Alexander [8 ]
Groehl, Janek
Nickel, Felix [8 ]
Koethe, Ullrich [4 ]
Seitel, Alexander [1 ,6 ,7 ]
Maier-Hein, Lena [1 ,3 ,4 ,6 ,7 ]
机构
[1] German Canc Res Ctr, Intelligent Med Syst, Heidelberg, Germany
[2] Heidelberg Univ, Fac Phys & Astron, Heidelberg, Germany
[3] Heidelberg Univ, Fac Med, Heidelberg, Germany
[4] Heidelberg Univ, Fac Math & Comp Sci, Heidelberg, Germany
[5] Helmholtz Informat & Data Sci Sch Hlth, Karlsruhe, Germany
[6] Natl Ctr Tumor Dis NCT, Heidelberg Partnership DKFZ, Heidelberg, Germany
[7] Univ Heidelberg Hosp, Heidelberg, Germany
[8] Univ Heidelberg Hosp, Dept Gen Visceral & Transplantat Surg, Heidelberg, Germany
[9] Univ Cambridge, Canc Res UK Cambridge Inst, Cambridge, England
[10] Univ Cambridge, Dept Phys, Cambridge, England
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT I | 2023年 / 14220卷
基金
欧洲研究理事会;
关键词
Domain transfer; invertible neural networks; medical imaging; photoacoustic tomography; hyperspectral imaging; deep learning;
D O I
10.1007/978-3-031-43907-0_73
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Synthetic medical image generation has evolved as a key technique for neural network training and validation. A core challenge, however, remains in the domain gap between simulations and real data. While deep learning-based domain transfer using Cycle Generative Adversarial Networks and similar architectures has led to substantial progress in the field, there are use cases in which state-of-the-art approaches still fail to generate training images that produce convincing results on relevant downstream tasks. Here, we address this issue with a domain transfer approach based on conditional invertible neural networks (cINNs). As a particular advantage, our method inherently guarantees cycle consistency through its invertible architecture, and network training can efficiently be conducted with maximum likelihood training. To showcase our method's generic applicability, we apply it to two spectral imaging modalities at different scales, namely hyperspectral imaging (pixel-level) and photoacoustic tomography (image-level). According to comprehensive experiments, our method enables the generation of realistic spectral data and outperforms the state of the art on two downstream classification tasks (binary and multi-class). cINN-based domain transfer could thus evolve as an important method for realistic synthetic data generation in the field of spectral imaging and beyond. The code is available at https://github.com/IMSY- DKFZ/UDT- cINN.
引用
收藏
页码:770 / 780
页数:11
相关论文
共 24 条
[1]   Uncertainty-aware performance assessment of optical imaging modalities with invertible neural networks [J].
Adler, Tim J. ;
Ardizzone, Lynton ;
Vemuri, Anant ;
Ayala, Leonardo ;
Groehl, Janek ;
Kirchner, Thomas ;
Wirkert, Sebastian ;
Kruse, Jakob ;
Rother, Carsten ;
Koethe, Ullrich ;
Maier-Hein, Lena .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2019, 14 (06) :997-1007
[2]  
Ardizzone L., 2020, Conditional invertible neural networks for guided image generation
[3]   Spectral imaging enables contrast agent-free real-time ischemia in laparoscopic surgery [J].
Ayala, Leonardo ;
Adler, Tim J. ;
Seidlitz, Silvia ;
Wirkert, Sebastian ;
Engels, Christina ;
Seitel, Alexander ;
Sellner, Jan ;
Aksenov, Alexey ;
Bodenbach, Matthias ;
Bader, Pia ;
Baron, Sebastian ;
Vemuri, Anant ;
Wiesenfarth, Manuel ;
Schreck, Nicholas ;
Mindroc, Diana ;
Tizabi, Minu ;
Pirmann, Sebastian ;
Everitt, Brittaney ;
Kopp-Schneider, Annette ;
Teber, Dogu ;
Maier-Hein, Lena .
SCIENCE ADVANCES, 2023, 9 (10)
[4]   Surgical spectral imaging [J].
Clancy, Neil T. ;
Jones, Geoffrey ;
Maier-Hein, Lena ;
Elson, Daniel S. ;
Stoyanov, Danail .
MEDICAL IMAGE ANALYSIS, 2020, 63
[5]  
Das HP, 2021, Arxiv, DOI arXiv:2108.11368
[6]   Clinically applicable deep learning for diagnosis and referral in retinal disease [J].
De Fauw, Jeffrey ;
Ledsam, Joseph R. ;
Romera-Paredes, Bernardino ;
Nikolov, Stanislav ;
Tomasev, Nenad ;
Blackwell, Sam ;
Askham, Harry ;
Glorot, Xavier ;
O'Donoghue, Brendan ;
Visentin, Daniel ;
van den Driessche, George ;
Lakshminarayanan, Balaji ;
Meyer, Clemens ;
Mackinder, Faith ;
Bouton, Simon ;
Ayoub, Kareem ;
Chopra, Reena ;
King, Dominic ;
Karthikesalingam, Alan ;
Hughes, Cian O. ;
Raine, Rosalind ;
Hughes, Julian ;
Sim, Dawn A. ;
Egan, Catherine ;
Tufail, Adnan ;
Montgomery, Hugh ;
Hassabis, Demis ;
Rees, Geraint ;
Back, Trevor ;
Khaw, Peng T. ;
Suleyman, Mustafa ;
Cornebise, Julien ;
Keane, Pearse A. ;
Ronneberger, Olaf .
NATURE MEDICINE, 2018, 24 (09) :1342-+
[7]  
Dinh L, 2017, Arxiv, DOI [arXiv:1605.08803, 10.48550/arXiv.1605.08803, DOI 10.48550/ARXIV.1605.08803]
[8]   SIMPA: an open-source toolkit for simulation and image processing for photonics and acoustics [J].
Groehl, Janek ;
Dreher, Kris K. ;
Schellenberg, Melanie ;
Rix, Tom ;
Holzwarth, Niklas ;
Vieten, Patricia ;
Ayala, Leonardo ;
Bohndiek, Sarah E. ;
Seitel, Alexander ;
Maier-Hein, Lena .
JOURNAL OF BIOMEDICAL OPTICS, 2022, 27 (08)
[9]   Deep learning for biomedical photoacoustic imaging: A review [J].
Groehl, Janek ;
Schellenberg, Melanie ;
Dreher, Kris ;
Maier-Hein, Lena .
PHOTOACOUSTICS, 2021, 22
[10]  
Grover A, 2020, AAAI CONF ARTIF INTE, V34, P4028