A NEW 3-D SIXTH-ORDER BOUSSINESQ MODEL IN SHALLOW WATER WAVE

被引:0
作者
Qi, Chang-Jun [1 ]
Zhao, Bao-Jun [1 ,2 ]
机构
[1] Yangzhou Univ, Coll Hydraul Sci & Engn, Yangzhou, Jiangsu, Peoples R China
[2] Hohai Univ, Key Lab, Minist Educ Coastal Disaster & Protect, Nanjing, Jiangsu, Peoples R China
来源
THERMAL SCIENCE | 2023年 / 27卷 / 5A期
关键词
3-D sixth-order Boussinesq equation; soliton solution; double-series perturbation analysis; EQUATIONS;
D O I
10.2298/TSCI2305857Q
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this article, the surface wave in inviscid fluid was analyzed. Based on the Euler equation and mass conservation equation, and coupled with a set of boundary conditions, the (2+1)-dimensional sixth-order Boussinesq equation is derived for the first time. According to double-series perturbation analysis and scale transformation, the one soliton solution is obtained with (G '/G)-expansion method. Finally, the effects of amplitude parameter and shallowness parameter on the amplitude of surface wave are analyzed.
引用
收藏
页码:3857 / 3862
页数:6
相关论文
共 50 条
[41]   Analyzing the Adaptive Mesh Refinement (AMR) Characteristics of a High-Order 2D Cubed-Sphere Shallow-Water Model [J].
Ferguson, Jared O. ;
Jablonowski, Christiane ;
Johansen, Hans ;
McCorquodale, Peter ;
Colella, Phillip ;
Ullrich, Paul A. .
MONTHLY WEATHER REVIEW, 2016, 144 (12) :4641-4666
[42]   Convective-Wave Solutions of the Richard-Gavrilyuk Model for Inclined Shallow-Water Flow [J].
Rodrigues, L. Miguel ;
Yang, Zhao ;
Zumbrun, Kevin .
WATER WAVES, 2023, 5 (01) :1-39
[43]   A new collision operator for lattice Boltzmann shallow water model: a convergence and stability study [J].
Venturi, Sara ;
Di Francesco, Silvia ;
Geier, Martin ;
Manciola, Piergiorgio .
ADVANCES IN WATER RESOURCES, 2020, 135
[44]   HIGH ORDER FINITE DIFFERENCE/SPECTRAL METHODS TO A WATER WAVE MODEL WITH NONLOCAL VISCOSITY [J].
Hasan, Mohammad Tanzil ;
Xu, Chuanju .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 2020, 38 (04) :580-605
[45]   Evaluation of 2D shallow-water model for spillway flow with a complex geometry [J].
Ying, Xinya ;
Wang, Sam S. Y. .
JOURNAL OF HYDRAULIC RESEARCH, 2010, 48 (02) :265-268
[46]   Historical overview of 2D and 3D hydrodynamic modelling of shallow water flows in the Netherlands [J].
De Goede, Erik D. .
OCEAN DYNAMICS, 2020, 70 (04) :521-539
[47]   A nodal discontinuous Galerkin approach to 3-D viscoelastic wave propagation in complex geological media [J].
Lambrecht, L. ;
Lamert, A. ;
Friederich, W. ;
Moeller, T. ;
Boxberg, M. S. .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2018, 212 (03) :1570-1587
[48]   A fully coupled 3-D mixed finite element model of Biot consolidation [J].
Ferronato, Massimiliano ;
Castelletto, Nicola ;
Gambolati, Giuseppe .
JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (12) :4813-4830
[49]   On the sensitivity of 3-D thermal convection codes to numerical discretization: a model intercomparison [J].
Arrial, P. -A ;
Flyer, N. ;
Wright, G. B. ;
Kellogg, L. H. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2014, 7 (05) :2065-2076
[50]   Numerical Solution of 3-D Water Entry Problems With a Constrained Interpolation Profile Method [J].
Yang, Qingyong ;
Qiu, Wei .
JOURNAL OF OFFSHORE MECHANICS AND ARCTIC ENGINEERING-TRANSACTIONS OF THE ASME, 2012, 134 (04)