A NEW 3-D SIXTH-ORDER BOUSSINESQ MODEL IN SHALLOW WATER WAVE

被引:0
作者
Qi, Chang-Jun [1 ]
Zhao, Bao-Jun [1 ,2 ]
机构
[1] Yangzhou Univ, Coll Hydraul Sci & Engn, Yangzhou, Jiangsu, Peoples R China
[2] Hohai Univ, Key Lab, Minist Educ Coastal Disaster & Protect, Nanjing, Jiangsu, Peoples R China
来源
THERMAL SCIENCE | 2023年 / 27卷 / 5A期
关键词
3-D sixth-order Boussinesq equation; soliton solution; double-series perturbation analysis; EQUATIONS;
D O I
10.2298/TSCI2305857Q
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this article, the surface wave in inviscid fluid was analyzed. Based on the Euler equation and mass conservation equation, and coupled with a set of boundary conditions, the (2+1)-dimensional sixth-order Boussinesq equation is derived for the first time. According to double-series perturbation analysis and scale transformation, the one soliton solution is obtained with (G '/G)-expansion method. Finally, the effects of amplitude parameter and shallowness parameter on the amplitude of surface wave are analyzed.
引用
收藏
页码:3857 / 3862
页数:6
相关论文
共 50 条
[21]   On the global regularity for a 3D Boussinesq model without thermal diffusion [J].
Wang, Weinan .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (06)
[22]   A new approach for the regularity of weak solutions of the 3D Boussinesq system [J].
Chamorro, Diego ;
Mindrila, Claudiu .
NONLINEARITY, 2024, 37 (06)
[23]   Wave Profile, Paul-Painlevé Approaches and Phase Plane Analysis to the Generalized (3+1)-Dimensional Shallow Water Wave Model [J].
Liu, Minghan ;
Manafian, Jalil ;
Singh, Gurpreet ;
Alsubaie, Abdullah Saad ;
Mahmoud, Khaled Hussein ;
Mustafayeva, Parvin .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (01)
[24]   On lump, travelling wave solutions and the stability analysis for the (3+1)-dimensional nonlinear fractional generalized shallow water wave model in fluids [J].
Badshah, Fazal ;
Tariq, Kalim U. ;
Inc, Mustafa ;
Mehboob, Fozia .
OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (02)
[25]   TOTALLY NEW SOLITON PHENOMENA IN THE FRACTIONAL ZOOMERON MODEL FOR SHALLOW WATER [J].
Wang, Kang-Le .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (03)
[26]   Validation of ANUGA hydraulic model using exact solutions to shallow water wave problems [J].
Mungkasi, S. ;
Roberts, S. G. .
2013 INTERNATIONAL CONFERENCE ON SCIENCE & ENGINEERING IN MATHEMATICS, CHEMISTRY AND PHYSICS (SCIETECH 2013), 2013, 423
[27]   1D-2D Coupled Numerical Model for Shallow-Water Flows [J].
Chen, Yongcan ;
Wang, Zhiyong ;
Liu, Zhaowei ;
Zhu, Dejun .
JOURNAL OF HYDRAULIC ENGINEERING, 2012, 138 (02) :122-132
[28]   A GPU-based 2D shallow water quality model [J].
Gordillo, Geovanny ;
Morales-Hernandez, Mario ;
Echeverribar, I ;
Fernandez-Pato, Javier ;
Garcia-Navarro, Pilar .
JOURNAL OF HYDROINFORMATICS, 2020, 22 (05) :1182-1197
[29]   LONG-WAVE APPROXIMATION TO THE 3-D CAPILLARY-GRAVITY WAVES [J].
Ming, Mei ;
Zhang, Ping ;
Zhang, Zhifei .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (04) :2920-2948
[30]   Deep neural Helmholtz operators for 3-D elastic wave propagation and inversion [J].
Zou, Caifeng ;
Azizzadenesheli, Kamyar ;
Ross, Zachary E. ;
Clayton, Robert W. .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2024, 239 (03) :1469-1484