Controlling circuitry underlies the growth optimization of Saccharomyces cerevisiae

被引:3
作者
Nguyen, Viviana [1 ,2 ]
Xue, Pu [2 ,3 ,4 ]
Li, Yifei [2 ,5 ]
Zhao, Huimin [2 ,3 ,4 ,6 ,7 ]
Lu, Ting [1 ,2 ,4 ,5 ,8 ,9 ]
机构
[1] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[2] Univ Illinois, Ctr Adv Bioenergy & Bioprod Innovat, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Chem & Biomol Engn, Urbana, IL 61801 USA
[4] Univ Illinois, Carl R Woese Inst Genom Biol, Urbana, IL 61801 USA
[5] Univ Illinois, Ctr Biophys & Quantitat Biol, Urbana, IL 61801 USA
[6] Univ Illinois, Dept Biochem, Urbana, IL 61801 USA
[7] Univ Illinois, Dept Chem, Urbana, IL 61801 USA
[8] Univ Illinois, Dept Bioengn, Urbana, IL 61801 USA
[9] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA
关键词
Systems biology; Growth optimality; Resource allocation; cAMP; Mathematical modeling; PROTEIN-COUPLED RECEPTOR; GENE-EXPRESSION; DIAUXIC SHIFT; CYCLIC-AMP; YEAST; GLUCOSE; KINASE; PATHWAY; METABOLISM; MECHANISMS;
D O I
10.1016/j.ymben.2023.09.013
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Microbial growth emerges from coordinated synthesis of various cellular components from limited resources. In Saccharomyces cerevisiae, cyclic AMP (cAMP)-mediated signaling is shown to orchestrate cellular metabolism; however, it remains unclear quantitatively how the controlling circuit drives resource partition and subsequently shapes biomass growth. Here we combined experiment with mathematical modeling to dissect the signalingmediated growth optimization of S. cerevisiae. We showed that, through cAMP-mediated control, the organism achieves maximal or nearly maximal steady-state growth during the utilization of multiple tested substrates as well as under perturbations impairing glucose uptake. However, the optimal cAMP concentration varies across cases, suggesting that different modes of resource allocation are adopted for varied conditions. Under settings with nutrient alterations, S. cerevisiae tunes its cAMP level to dynamically reprogram itself to realize rapid adaptation. Moreover, to achieve growth maximization, cells employ additional regulatory systems such as the GCN2-mediated amino acid control. This study establishes a systematic understanding of global resource allocation in S. cerevisiae, providing insights into quantitative yeast physiology as well as metabolic strain engineering for biotechnological applications.
引用
收藏
页码:173 / 183
页数:11
相关论文
共 50 条
[31]   Magnesium-limited growth of Saccharomyces cerevisiae [J].
Walker, GM ;
Maynard, AI .
ENZYME AND MICROBIAL TECHNOLOGY, 1996, 18 (06) :455-459
[32]   Polyphosphates as an energy source for growth of Saccharomyces cerevisiae [J].
Trilisenko, L. V. ;
Kulakovskaya, T. V. .
BIOCHEMISTRY-MOSCOW, 2014, 79 (05) :478-482
[33]   Boron stimulates yeast (Saccharomyces cerevisiae) growth [J].
Bennett, A ;
Rowe, RI ;
Soch, N ;
Eckhert, CD .
JOURNAL OF NUTRITION, 1999, 129 (12) :2236-2238
[34]   Quiescence in Saccharomyces cerevisiae [J].
Breeden, Linda L. ;
Tsukiyama, Toshio .
ANNUAL REVIEW OF GENETICS, 2022, 56 :253-278
[35]   Gene expression study of Saccharomyces cerevisiae under changing growth conditions [J].
Fu, Pengcheng .
JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2009, 84 (08) :1163-1171
[36]   Protein phosphorylation in mitochondria - A study on fermentative and respiratory growth of Saccharomyces cerevisiae [J].
Ohlmeier, Steffen ;
Hiltunen, J. Kalervo ;
Bergmann, Ulrich .
ELECTROPHORESIS, 2010, 31 (17) :2869-2881
[37]   Growth-phase-dependent control of rRNA synthesis in Saccharomyces cerevisiae [J].
Felgueira, Catarina A. Mendes ;
Schneider, David A. .
MSPHERE, 2024, 9 (10)
[38]   Uncoupling growth and succinic acid production in an industrial Saccharomyces cerevisiae strain [J].
Liu, Yaya ;
Esen, Osman ;
Pronk, Jack T. ;
van Gulik, Walter M. .
BIOTECHNOLOGY AND BIOENGINEERING, 2021, 118 (04) :1576-1586
[39]   Engineering Saccharomyces cerevisiae for fast vitamin-independent aerobic growth [J].
Ehrmann, Anja K. ;
Wronska, Anna K. ;
Perli, Thomas ;
de Hulster, Erik A. F. ;
Luttik, Marijke A. H. ;
van den Broek, Marcel ;
Cardoso, Clara Carqueija ;
Pronk, Jack T. ;
Daran, Jean Marc .
METABOLIC ENGINEERING, 2024, 82 :201-215
[40]   Galacturonic Acid Inhibits the Growth of Saccharomyces cerevisiae on Galactose, Xylose, and Arabinose [J].
Huisjes, Eline H. ;
de Hulster, Erik ;
van Dam, Jan C. ;
Pronk, Jack T. ;
van Maris, Antonius J. A. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2012, 78 (15) :5052-5059