Controlling circuitry underlies the growth optimization of Saccharomyces cerevisiae

被引:3
作者
Nguyen, Viviana [1 ,2 ]
Xue, Pu [2 ,3 ,4 ]
Li, Yifei [2 ,5 ]
Zhao, Huimin [2 ,3 ,4 ,6 ,7 ]
Lu, Ting [1 ,2 ,4 ,5 ,8 ,9 ]
机构
[1] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[2] Univ Illinois, Ctr Adv Bioenergy & Bioprod Innovat, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Chem & Biomol Engn, Urbana, IL 61801 USA
[4] Univ Illinois, Carl R Woese Inst Genom Biol, Urbana, IL 61801 USA
[5] Univ Illinois, Ctr Biophys & Quantitat Biol, Urbana, IL 61801 USA
[6] Univ Illinois, Dept Biochem, Urbana, IL 61801 USA
[7] Univ Illinois, Dept Chem, Urbana, IL 61801 USA
[8] Univ Illinois, Dept Bioengn, Urbana, IL 61801 USA
[9] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA
关键词
Systems biology; Growth optimality; Resource allocation; cAMP; Mathematical modeling; PROTEIN-COUPLED RECEPTOR; GENE-EXPRESSION; DIAUXIC SHIFT; CYCLIC-AMP; YEAST; GLUCOSE; KINASE; PATHWAY; METABOLISM; MECHANISMS;
D O I
10.1016/j.ymben.2023.09.013
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Microbial growth emerges from coordinated synthesis of various cellular components from limited resources. In Saccharomyces cerevisiae, cyclic AMP (cAMP)-mediated signaling is shown to orchestrate cellular metabolism; however, it remains unclear quantitatively how the controlling circuit drives resource partition and subsequently shapes biomass growth. Here we combined experiment with mathematical modeling to dissect the signalingmediated growth optimization of S. cerevisiae. We showed that, through cAMP-mediated control, the organism achieves maximal or nearly maximal steady-state growth during the utilization of multiple tested substrates as well as under perturbations impairing glucose uptake. However, the optimal cAMP concentration varies across cases, suggesting that different modes of resource allocation are adopted for varied conditions. Under settings with nutrient alterations, S. cerevisiae tunes its cAMP level to dynamically reprogram itself to realize rapid adaptation. Moreover, to achieve growth maximization, cells employ additional regulatory systems such as the GCN2-mediated amino acid control. This study establishes a systematic understanding of global resource allocation in S. cerevisiae, providing insights into quantitative yeast physiology as well as metabolic strain engineering for biotechnological applications.
引用
收藏
页码:173 / 183
页数:11
相关论文
共 50 条
  • [21] Nutritional requirements of the BY series of Saccharomyces cerevisiae strains for optimum growth
    Hanscho, Michael
    Ruckerbauer, David E.
    Chauhan, Neha
    Hofbauer, Harald F.
    Krahulec, Stefan
    Nidetzky, Bernd
    Kohlwein, Sepp D.
    Zanghellini, Juergen
    Natter, Klaus
    FEMS YEAST RESEARCH, 2012, 12 (07) : 796 - 808
  • [22] Model-assisted DoE software: optimization of growth and biocatalysis in Saccharomyces cerevisiae bioprocesses
    Moser, Andre
    Kuchemueller, Kim B.
    Deppe, Sahar
    Rodriguez, Tanja Hernandez
    Frahm, Bjorn
    Poertner, Ralf
    Hass, Volker C.
    Moeller, Johannes
    BIOPROCESS AND BIOSYSTEMS ENGINEERING, 2021, 44 (04) : 683 - 700
  • [23] Engineering of Saccharomyces cerevisiae for the production of (+)-ambrein
    Moser, Sandra
    Leitner, Erich
    Plocek, Thomas J.
    Vanhessche, Koenraad
    Pichler, Harald
    YEAST, 2020, 37 (01) : 163 - 172
  • [24] Correlation of cell growth and heterologous protein production by Saccharomyces cerevisiae
    Liu, Zihe
    Hou, Jin
    Martinez, Jose L.
    Petranovic, Dina
    Nielsen, Jens
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2013, 97 (20) : 8955 - 8962
  • [25] The Stress-Inducible Peroxidase TSA2 Underlies a Conditionally Beneficial Chromosomal Duplication in Saccharomyces cerevisiae
    Linder, Robert A.
    Greco, John P.
    Seidl, Fabian
    Matsui, Takeshi
    Ehrenreich, Ian M.
    G3-GENES GENOMES GENETICS, 2017, 7 (09): : 3177 - 3184
  • [26] Construction and Optimization of the de novo Biosynthesis Pathway of Mogrol in Saccharomyces Cerevisiae
    Wang, Siyu
    Xu, Xianhao
    Lv, Xueqin
    Liu, Yanfeng
    Li, Jianghua
    Du, Guocheng
    Liu, Long
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10
  • [27] Optimization of Microbial Glycogen Production by Saccharomyces cerevisiae CEY1
    Choi, Hyungseok
    Yeo, In-Seok
    Mwiti, Godfrey
    Dinh, Toan Nguyen Song
    Kang, Hyein
    Kim, Chang Sup
    Kim, Jaehan
    FERMENTATION-BASEL, 2024, 10 (08):
  • [28] Management of Multiple Nitrogen Sources during Wine Fermentation by Saccharomyces cerevisiae
    Crepin, Lucie
    Nhat My Truong
    Bloem, Audrey
    Sanchez, Isabelle
    Dequin, Sylvie
    Camarasa, Carole
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2017, 83 (05)
  • [29] Quiescence in Saccharomyces cerevisiae
    Breeden, Linda L.
    Tsukiyama, Toshio
    ANNUAL REVIEW OF GENETICS, 2022, 56 : 253 - 278
  • [30] Polyphosphates as an energy source for growth of Saccharomyces cerevisiae
    Trilisenko, L. V.
    Kulakovskaya, T. V.
    BIOCHEMISTRY-MOSCOW, 2014, 79 (05) : 478 - 482