Controlling circuitry underlies the growth optimization of Saccharomyces cerevisiae

被引:3
作者
Nguyen, Viviana [1 ,2 ]
Xue, Pu [2 ,3 ,4 ]
Li, Yifei [2 ,5 ]
Zhao, Huimin [2 ,3 ,4 ,6 ,7 ]
Lu, Ting [1 ,2 ,4 ,5 ,8 ,9 ]
机构
[1] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[2] Univ Illinois, Ctr Adv Bioenergy & Bioprod Innovat, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Chem & Biomol Engn, Urbana, IL 61801 USA
[4] Univ Illinois, Carl R Woese Inst Genom Biol, Urbana, IL 61801 USA
[5] Univ Illinois, Ctr Biophys & Quantitat Biol, Urbana, IL 61801 USA
[6] Univ Illinois, Dept Biochem, Urbana, IL 61801 USA
[7] Univ Illinois, Dept Chem, Urbana, IL 61801 USA
[8] Univ Illinois, Dept Bioengn, Urbana, IL 61801 USA
[9] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA
关键词
Systems biology; Growth optimality; Resource allocation; cAMP; Mathematical modeling; PROTEIN-COUPLED RECEPTOR; GENE-EXPRESSION; DIAUXIC SHIFT; CYCLIC-AMP; YEAST; GLUCOSE; KINASE; PATHWAY; METABOLISM; MECHANISMS;
D O I
10.1016/j.ymben.2023.09.013
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Microbial growth emerges from coordinated synthesis of various cellular components from limited resources. In Saccharomyces cerevisiae, cyclic AMP (cAMP)-mediated signaling is shown to orchestrate cellular metabolism; however, it remains unclear quantitatively how the controlling circuit drives resource partition and subsequently shapes biomass growth. Here we combined experiment with mathematical modeling to dissect the signalingmediated growth optimization of S. cerevisiae. We showed that, through cAMP-mediated control, the organism achieves maximal or nearly maximal steady-state growth during the utilization of multiple tested substrates as well as under perturbations impairing glucose uptake. However, the optimal cAMP concentration varies across cases, suggesting that different modes of resource allocation are adopted for varied conditions. Under settings with nutrient alterations, S. cerevisiae tunes its cAMP level to dynamically reprogram itself to realize rapid adaptation. Moreover, to achieve growth maximization, cells employ additional regulatory systems such as the GCN2-mediated amino acid control. This study establishes a systematic understanding of global resource allocation in S. cerevisiae, providing insights into quantitative yeast physiology as well as metabolic strain engineering for biotechnological applications.
引用
收藏
页码:173 / 183
页数:11
相关论文
共 50 条
  • [1] Coordinated regulation of growth genes in Saccharomyces cerevisiae
    Slattery, Matthew G.
    Heideman, Warren
    CELL CYCLE, 2007, 6 (10) : 1210 - 1219
  • [2] Controlling Central Carbon Metabolism for Improved Pathway Yields in Saccharomyces cerevisiae
    Tan, Sue Zanne
    Manchester, Shawn
    Prather, Kristala L. J.
    ACS SYNTHETIC BIOLOGY, 2016, 5 (02): : 116 - 124
  • [3] Optimization of Pinocembrin Biosynthesis in Saccharomyces cerevisiae
    Mohedano, Marta Tous
    Mao, Jiwei
    Chen, Yun
    ACS SYNTHETIC BIOLOGY, 2022, : 144 - 152
  • [4] Genetic determinants for enhanced glycerol growth of Saccharomyces cerevisiae
    Swinnen, Steve
    Ho, Ping-Wei
    Klein, Mathias
    Nevoigt, Elke
    METABOLIC ENGINEERING, 2016, 36 : 68 - 79
  • [5] Controlling protein expression by using intron-aided promoters in Saccharomyces cerevisiae
    Cui, Xiaoyi
    Ma, Xiaoqiang
    Prather, Kristala L. J.
    Zhou, Kang
    BIOCHEMICAL ENGINEERING JOURNAL, 2021, 176
  • [6] Modeling growth and telomere dynamics in Saccharomyces cerevisiae
    Olofsson, Peter
    Bertuch, Alison A.
    JOURNAL OF THEORETICAL BIOLOGY, 2010, 263 (03) : 353 - 359
  • [7] The Influence of Microgravity on Invasive Growth in Saccharomyces cerevisiae
    Van Mulders, Sebastiaan E.
    Stassen, Catherine
    Daenen, Luk
    Devreese, Bart
    Siewers, Verena
    van Eijsden, Rudy G. E.
    Nielsen, Jens
    Delvaux, Freddy R.
    Willaert, Ronnie
    ASTROBIOLOGY, 2011, 11 (01) : 45 - 55
  • [8] Choline-Based Ionic Liquids as Media for the Growth of Saccharomyces cerevisiae
    Sivapragasam, Magaret
    Wilfred, Cecilia Devi
    Jaganathan, Joshua Raj
    Krishnan, Sooridarsan
    Ghani, Wan Azlina Wan Ab Wan Karim
    PROCESSES, 2019, 7 (07) : 1 - 13
  • [9] DIAUXIC GROWTH OF SACCHAROMYCES CEREVISIAE
    Lavova, Blazena
    Urminska, Dana
    Sillerova, Silvia
    JOURNAL OF MICROBIOLOGY BIOTECHNOLOGY AND FOOD SCIENCES, 2014, 3 : 122 - 123
  • [10] Nuclear Ras2-GTP Controls Invasive Growth in Saccharomyces cerevisiae
    Broggi, Serena
    Martegani, Enzo
    Colombo, Sonia
    PLOS ONE, 2013, 8 (11):