Lignite-Based Hierarchical Porous C/SiOx Composites as High-Performance Anode for Potassium-Ion Batteries

被引:11
|
作者
Yang, Zexu [1 ]
Zhao, Shouwang [1 ]
Jiao, Rongji [1 ]
Hao, Gengyu [1 ]
Liu, Yunying [1 ]
He, Wenxiu [1 ]
Chen, Jingwei [2 ]
Jia, Guixiao [1 ]
Cui, Jinlong [1 ]
Li, Shaohui [3 ]
机构
[1] Inner Mongolia Univ Sci & Technol, Sch Chem & Chem Engn, Aerogel Funct Nanomat Lab, Baotou 014010, Peoples R China
[2] Ocean Univ China, Sch Mat Sci & Engn, Qingdao 266100, Peoples R China
[3] Zhengzhou Univ, Sch Mat Sci & Engn, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
anode; hierarchical porous C/SiOx; K4SiO4; lignite; potassium-ion batteries; CAPABILITY; NANOTUBES;
D O I
10.1002/eem2.12674
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Silicon oxide (SiOx, 0 < x <= 2) has been recognized as a prominent anode material in lithium-ion batteries and sodium-ion batteries due to its high theoretical capacity, suitable electrochemical potential, and earth abundance. However, it is intrinsically poor electronic conductivity and excessive volume expansion during potassiation/depotassiation process hinder its application in potassium-ion batteries. Herein, we reported a hierarchical porous C/SiOx potassium-ion batteries anode using lignite as raw material via a one-step carbonization and activation method. The amorphous C skeleton around SiOx particles can effectively buffer the volume expansion, and improve the ionic/electronic conductivity and structural integrity, achieving outstanding rate capability and cyclability. As expected, the obtained C/SiOx composite delivers a superb specific capacity of 370 mAh g(-1) at 0.1 A g(-1) after 100 cycles as well as a highly reversible capacity of 208 mAh g(-1 )after 1200 cycles at 1.0 A g(-1). Moreover, the potassium ion storage mechanism of C/SiOx electrodes was investigated by ex-situ X-ray diffraction and transmission electron microscopy, revealing the formation of reversible products of K6.8Si45.3 and K4SiO4, accompanied by generation of irreversible K2O after the first cycle. This work sheds light on designing low-cost Si-based anode materials for high-performance potassium-ion batteries and beyond.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Lignite-based hard carbon for high-performance potassium-ion battery anode
    Yang, Hui
    Lei, Long
    Zhao, Yue
    Lan, Dawei
    An, Shengli
    Liu, Yunying
    Cui, Jinlong
    IONICS, 2024, 30 (06) : 3253 - 3263
  • [2] S/N co-doped hierarchical porous carbon from lignite as high-performance anode for potassium-ion batteries
    Jiao, Rongji
    Deng, Zhengjun
    Lei, Long
    Liu, Yunying
    Cui, Jinlong
    JOURNAL OF ENERGY STORAGE, 2023, 74
  • [3] Porous carbon nanofibers as anode for high-performance potassium-ion batteries
    Chen, Lan
    Lin, Xuqi
    Gao, Jingguo
    Zou, Mingzhong
    Huang, Yongcong
    Zhao, Guiying
    Li, Jiaxin
    ELECTROCHIMICA ACTA, 2022, 403
  • [4] Fabrication of Porous Carbon with Controllable Nitrogen Doping as Anode for High-Performance Potassium-Ion Batteries
    Wang, Jie
    Wang, Dan
    Dong, Kangze
    Hao, Aimin
    Luo, Shaohua
    Liu, Yanguo
    Wang, Qing
    Zhang, Yahui
    Wang, Zhiyuan
    CHEMELECTROCHEM, 2019, 6 (14): : 3699 - 3707
  • [5] Bacterial-Derived, Compressible, and Hierarchical Porous Carbon for High-Performance Potassium-Ion Batteries
    Li, Hongyan
    Cheng, Zheng
    Zhang, Qing
    Natan, Avi
    Yang, Yang
    Cao, Daxian
    Zhu, Hongli
    NANO LETTERS, 2018, 18 (11) : 7407 - 7413
  • [6] Highly Nitrogen-Doped Porous Carbon Nanosheets as High-Performance Anode for Potassium-Ion Batteries
    Zhang, Dong Mei
    Chen, Zhi Wen
    Bai, Jie
    Yang, Chun Cheng
    Jiang, Qing
    BATTERIES & SUPERCAPS, 2020, 3 (02) : 185 - 193
  • [7] Highly crystalline graphite nanofibers as an anode for high-performance potassium-ion batteries
    Sun, Kaixuan
    Chang, Kun
    Tan, Jinshuo
    Sun, Chuan-Fu
    Liu, Qin
    NEW JOURNAL OF CHEMISTRY, 2024, 48 (16) : 7497 - 7502
  • [8] A High-performance SiOx/C/graphene Composite Anode for Lithium Ion Batteries
    Li W.
    Wang Y.
    Tang R.
    Xia W.
    Xiao F.
    Wang H.
    Huang L.
    Sun T.
    Cailiao Daobao/Materials Review, 2017, 31 (08): : 16 - 20
  • [9] Low-cost carbon materials as anode for high-performance potassium-ion batteries
    Zhao, Chunxia
    Li, Hang
    Zou, Yujie
    Qi, Yanyuan
    Jian, Zelang
    Chen, Wen
    MATERIALS LETTERS, 2020, 262 (262)
  • [10] Alkynyl-Based Covalent Organic Frameworks as High-Performance Anode Materials for Potassium-Ion Batteries
    Wolfson, Eric R.
    Schkeryantz, Luke
    Moscarello, Erica M.
    Fernandez, Joseph P.
    Paszek, Jonah
    Wu, Yiying
    Hadad, Christopher M.
    McGrier, Psaras L.
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (35) : 41628 - 41636