Multispectral Food Classification and Caloric Estimation Using Convolutional Neural Networks

被引:3
|
作者
Lee, Ki-Seung [1 ]
机构
[1] Konkuk Univ, Dept Elect & Elect Engn, 1 Hwayang dong, Seoul 05029, South Korea
关键词
multispectral imaging; convolutional neural network; food analysis; non-invasive analysis; dietary assessment; data fusion; SUGAR CONTENT; PREDICTION; RECORDS; SYSTEM; BEEF;
D O I
10.3390/foods12173212
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Continuous monitoring and recording of the type and caloric content of ingested foods with a minimum of user intervention is very useful in preventing metabolic diseases and obesity. In this paper, automatic recognition of food type and caloric content was achieved via the use of multi-spectral images. A method of fusing the RGB image and the images captured at ultra violet, visible, and near-infrared regions at center wavelengths of 385, 405, 430, 470, 490, 510, 560, 590, 625, 645, 660, 810, 850, 870, 890, 910, 950, 970, and 1020 nm was adopted to improve the accuracy. A convolutional neural network (CNN) was adopted to classify food items and estimate the caloric amounts. The CNN was trained using 10,909 images acquired from 101 types. The objective functions including classification accuracy and mean absolute percentage error (MAPE) were investigated according to wavelength numbers. The optimal combinations of wavelengths (including/excluding the RGB image) were determined by using a piecewise selection method. Validation tests were carried out on 3636 images of the food types that were used in training the CNN. As a result of the experiments, the accuracy of food classification was increased from 88.9 to 97.1% and MAPEs were decreased from 41.97 to 18.97 even when one kind of NIR image was added to the RGB image. The highest accuracy for food type classification was 99.81% when using 19 images and the lowest MAPE for caloric content was 10.56 when using 14 images. These results demonstrated that the use of the images captured at various wavelengths in the UV and NIR bands was very helpful for improving the accuracy of food classification and caloric estimation.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Habitat classification using convolutional neural networks and multitemporal multispectral aerial imagery
    Perez-Carabaza, Sara
    Boydell, Oisin
    O'Connell, Jerome
    JOURNAL OF APPLIED REMOTE SENSING, 2021, 15 (04)
  • [2] Food Classification from Images Using Convolutional Neural Networks
    Attokaren, David J.
    Fernandes, Ian G.
    Sriram, A.
    Murthy, Y. V. Srinivasa
    Koolagudi, Shashidhar G.
    TENCON 2017 - 2017 IEEE REGION 10 CONFERENCE, 2017, : 2801 - 2806
  • [3] Multispectral Camera Calibration Using Convolutional Neural Networks
    Trujillo, Ivan A. Juarez
    de Paz, Jonny P. Zavala
    Sandoval, Omar Palillero
    Velasquez, Francisco A. Castillo
    COMPUTACION Y SISTEMAS, 2023, 27 (03): : 801 - 810
  • [4] Crop Classification Based on Lightened Convolutional Neural Networks in Multispectral Images
    Shi, Jiawei
    Zhang, Haopeng
    Jiang, Zhiguo
    Meng, Gang
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXV, 2019, 11155
  • [5] Crop Classification of Satellite Imagery Using Synthetic Multitemporal and Multispectral Images in Convolutional Neural Networks
    Siesto, Guillermo
    Fernandez-Sellers, Marcos
    Lozano-Tello, Adolfo
    REMOTE SENSING, 2021, 13 (17)
  • [6] Joint object classification and turbulence strength estimation using convolutional neural networks
    LeMaster, Daniel A.
    Leung, Steven
    Mendoza-Schrock, Olga L.
    APPLIED OPTICS, 2021, 60 (25) : G40 - G48
  • [7] PYRAMID CONVOLUTIONAL NEURAL NETWORKS AND BOTTLENECK RESIDUAL MODULES FOR CLASSIFICATION OF MULTISPECTRAL IMAGES
    Huang, Yukun
    Wei, Jingbo
    Tang, Wenchao
    He, Chaoqi
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 1949 - 1952
  • [8] Classification of Compressed Remote Sensing Multispectral Images via Convolutional Neural Networks
    Giannopoulos, Michalis
    Aidini, Anastasia
    Pentari, Anastasia
    Fotiadou, Konstantina
    Tsakalides, Panagiotis
    JOURNAL OF IMAGING, 2020, 6 (04)
  • [9] Plant Classification using Convolutional Neural Networks
    Yalcin, Hulya
    Razavi, Salar
    2016 FIFTH INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS (AGRO-GEOINFORMATICS), 2016, : 233 - 237
  • [10] Sound Classification Using Convolutional Neural Networks
    Jaiswal, Kaustumbh
    Patel, Dhairya Kalpeshbhai
    2018 SEVENTH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING IN EMERGING MARKETS (CCEM), 2018, : 81 - 84