Image harmonization: A review of statistical and deep learning methods for removing batch effects and evaluation metrics for effective harmonization

被引:46
作者
Hu, Fengling [1 ]
Chen, Andrew A. [1 ]
Horng, Hannah [1 ]
Bashyam, Vishnu [2 ]
Davatzikos, Christos [2 ]
Alexander-Bloch, Aaron [3 ,4 ,5 ]
Li, Mingyao [6 ]
Shou, Haochang [1 ,2 ]
Satterthwaite, Theodore D. [3 ,4 ,7 ]
Yuh, Meichen [8 ]
Shinohara, Russell T. [1 ,2 ]
机构
[1] Univ Penn, Perelman Sch Med, Dept Biostat Epidemiol & Informat, Penn Stat Imaging & Visualizat Endeavor PennS, 423 Guardian Dr, Philadelphia, PA 19104 USA
[2] Perelman Sch Med, Ctr Biomed Image Comp & Analyt CB, Philadelphia, PA USA
[3] Univ Penn, Perelman Sch Med, Dept Psychiat, Philadelphia, PA USA
[4] Penn CHOP Lifespan Brain Inst, New York, NY USA
[5] Childrens Hosp Philadelphia, Dept Child & Adolescent Psychiat & Behav Sci, Philadelphia, PA USA
[6] Univ Penn, Stat Ctr Single Cell & Spatial Genom, Perelman Sch Med, Philadelphia, PA USA
[7] Univ Penn, Penn Lifespan Informat & Neuroimaging Ctr, Perelman Sch Med, Dept Psychiat, Philadelphia, PA USA
[8] Indiana Univ, Sch Med, Indiana Alzheimers Dis Res Ctr, Indianapolis, IN USA
关键词
DIFFUSION MRI DATA; INDEPENDENT COMPONENT ANALYSIS; RANDOMIZED CONTROLLED-TRIALS; MULTI-SCANNER; MULTICENTER REPRODUCIBILITY; COVARIATE ADJUSTMENT; FUNCTIONAL MRI; BRAIN; REGISTRATION; RELIABILITY;
D O I
10.1016/j.neuroimage.2023.120125
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Magnetic resonance imaging and computed tomography from multiple batches (e.g. sites, scanners, datasets, etc.) are increasingly used alongside complex downstream analyses to obtain new insights into the human brain. However, significant confounding due to batch-related technical variation, called batch effects, is present in this data; direct application of downstream analyses to the data may lead to biased results. Image harmonization methods seek to remove these batch effects and enable increased generalizability and reproducibility of downstream results. In this review, we describe and categorize current approaches in statistical and deep learning harmonization methods. We also describe current evaluation metrics used to assess harmonization methods and provide a standardized framework to evaluate newly-proposed methods for effective harmonization and preservation of biological information. Finally, we provide recommendations to end-users to advocate for more effective use of current methods and to methodologists to direct future efforts and accelerate development of the field.
引用
收藏
页数:24
相关论文
共 229 条
  • [1] Radiomics-Based Detection of Radionecrosis Using Harmonized Multiparametric MRI
    Acquitter, Clement
    Piram, Lucie
    Sabatini, Umberto
    Gilhodes, Julia
    Moyal Cohen-Jonathan, Elizabeth
    Ken, Soleakhena
    Lemasson, Benjamin
    [J]. CANCERS, 2022, 14 (02)
  • [2] Improving Alzheimer's stage categorization with Convolutional Neural Network using transfer learning and different magnetic resonance imaging modalities
    Aderghal, Karim
    Afdel, Karim
    Benois-Pineau, Jenny
    Catheline, Gwenaelle
    [J]. HELIYON, 2020, 6 (12)
  • [3] Goal-specific brain MRI harmonization
    An, Lijun
    Chen, Jianzhong
    Chen, Pansheng
    Zhang, Chen
    He, Tong
    Chen, Christopher
    Zhou, Juan Helen
    Yeo, B. T. Thomas
    [J]. NEUROIMAGE, 2022, 263
  • [4] Heterogeneous Large Datasets Integration Using Bayesian Factor Regression
    Avalos-Pacheco, Alejandra
    Rossell, David
    Savage, Richard S.
    [J]. BAYESIAN ANALYSIS, 2022, 17 (01): : 33 - 66
  • [5] Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain
    Avants, B. B.
    Epstein, C. L.
    Grossman, M.
    Gee, J. C.
    [J]. MEDICAL IMAGE ANALYSIS, 2008, 12 (01) : 26 - 41
  • [6] Multivariate consistency of resting-state fMRI connectivity maps acquired on a single individual over 2.5 years, 13 sites and 3 vendors
    Badhwar, AmanPreet
    Collin-Verreault, Yannik
    Orban, Pierre
    Urchs, Sebastian
    Chouinard, Isabelle
    Vogel, Jacob
    Potvin, Olivier
    Duchesne, Simon
    Bellec, Pierre
    [J]. NEUROIMAGE, 2020, 205
  • [7] In vivo white matter microstructure in adolescents with early-onset psychosis: a multi-site mega-analysis
    Barth, Claudia
    Kelly, Sinead
    Nerland, Stener
    Jahanshad, Neda
    Alloza, Clara
    Ambrogi, Sonia
    Andreassen, Ole A.
    Andreou, Dimitrios
    Arango, Celso
    Baeza, Inmaculada
    Banaj, Nerisa
    Bearden, Carrie E.
    Berk, Michael
    Bohman, Hannes
    Castro-Fornieles, Josefina
    Chye, Yann
    Crespo-Facorro, Benedicto
    de la Serna, Elena
    Diaz-Caneja, Covadonga M.
    Gurholt, Tiril P.
    Hegarty, Catherine E.
    James, Anthony
    Janssen, Joost
    Johannessen, Cecilie
    Joensson, Erik G.
    Karlsgodt, Katherine H.
    Kochunov, Peter
    Lois, Noemi G.
    Lundberg, Mathias
    Myhre, Anne M.
    Pascual-Diaz, Sauel
    Piras, Fabrizio
    Smelror, Runar E.
    Spalletta, Gianfranco
    Stokkan, Therese S.
    Sugranyes, Gisela
    Suo, Chao
    Thomopoulos, Sophia I.
    Tordesillas-Gutierrez, Diana
    Vecchio, Daniela
    Wedervang-Resell, Kirsten
    Wortinger, Laura A.
    Thompson, Paul M.
    Agartz, Ingrid
    [J]. MOLECULAR PSYCHIATRY, 2023, 28 (03) : 1159 - 1169
  • [8] Deep Generative Medical Image Harmonization for Improving Cross-Site Generalization in Deep Learning Predictors
    Bashyam, Vishnu M.
    Doshi, Jimit
    Erus, Guray
    Srinivasan, Dhivya
    Abdulkadir, Ahmed
    Singh, Ashish
    Habes, Mohamad
    Fan, Yong
    Masters, Colin L.
    Maruff, Paul
    Zhuo, Chuanjun
    Voelzke, Henry
    Johnson, Sterling C.
    Fripp, Jurgen
    Koutsouleris, Nikolaos
    Satterthwaite, Theodore D.
    Wolf, Daniel H.
    Gur, Raquel E.
    Gur, Ruben C.
    Morris, John C.
    Albert, Marilyn S.
    Grabe, Hans J.
    Resnick, Susan M.
    Bryan, Nick R.
    Wittfeld, Katharina
    Bulow, Robin
    Wolk, David A.
    Shou, Haochang
    Nasrallah, Ilya M.
    Davatzikos, Christos
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2022, 55 (03) : 908 - 916
  • [9] Should Stroke Trials Adjust Functional Outcome for Baseline Prognostic Factors?
    Bath, Philip
    Gray, Laura J.
    Collier, Timothy
    [J]. STROKE, 2009, 40 (03) : 888 - 894
  • [10] Site effects how-to and when: An overview of retrospective techniques to accommodate site effects in multi-site neuroimaging analyses
    Bayer, Johanna M. M.
    Thompson, Paul M.
    Ching, Christopher R. K.
    Liu, Mengting
    Chen, Andrew
    Panzenhagen, Alana C.
    Jahanshad, Neda
    Marquand, Andre
    Schmaal, Lianne
    Samann, Philipp G.
    [J]. FRONTIERS IN NEUROLOGY, 2022, 13