Initial Results of the Relative Humidity Observations by MEDA Instrument Onboard the Mars 2020 Perseverance Rover

被引:15
作者
Polkko, J. [1 ]
Hieta, M. [1 ]
Harri, A. -M. [1 ]
Tamppari, L. [2 ]
Martinez, G. [3 ,4 ]
Viudez-Moreiras, D. [5 ]
Savijarvi, H. [6 ]
Conrad, P. [7 ]
Zorzano Mier, M. P. [5 ]
De La Torre Juarez, M. [2 ]
Hueso, R. [8 ]
Munguira, A. [8 ]
Leino, J. [1 ]
Gomez, F. [5 ]
Jaakonaho, I. [1 ]
Fischer, E.
Genzer, M. [1 ]
Apestigue, V.
Arruego, I. [9 ]
Banfield, D. [10 ]
Lepinette, A. [5 ]
Paton, M. [1 ]
Rodriguez-Manfredi, J. A. [5 ]
Sanchez Lavega, A. [8 ]
Sebastian, E. [5 ]
Toledo, D. [9 ]
Vicente-Retortillo, A. [5 ]
机构
[1] Finnish Meteorol Inst, Helsinki, Finland
[2] CALTECH, Jet Prop Lab, Pasadena, CA USA
[3] USRA, Lunar & Planetary Inst, Houston, TX USA
[4] Univ Michigan, Ann Arbor, MI USA
[5] Ctr Astrobiol INTA CSIC, Madrid, Spain
[6] Univ Helsinki, Helsinki, Finland
[7] Carnegie Inst Sci, Washington, DC USA
[8] Univ Pais Vasco UPV EHU, Bilbao, Spain
[9] INTA, Madrid, Spain
[10] Cornell Univ, Ithaca, NY USA
基金
美国国家航空航天局;
关键词
Mars; humidity; water vapor; observations; instrument performance; near surface; MARTIAN WATER-VAPOR; GALE CRATER; ATMOSPHERE; CYCLE; ABUNDANCE; CALIBRATION; SATURATION; EXCHANGE; BEHAVIOR; VIKING;
D O I
10.1029/2022JE007447
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The Mars 2020 mission rover "Perseverance", launched on 30 July 2020 by NASA, landed successfully 18 February 2021 at Jezero Crater, Mars (Lon. E 77.4509 degrees Lat. N 18.4446 degrees). The landing took place at Mars solar longitude Ls = 5.2 degrees, close to start of the northern spring. Perseverance's payload includes the relative humidity sensor MEDA HS (Mars Environmental Dynamics Analyzer Humidity Sensor), which operations, performance, and the first observations from sol 80 to sol 410 (Ls 44 degrees -210 degrees) of Perseverance's operations we describe. The relative humidity measured by MEDA-HS is reliable from late night hours to few tens of minutes after sunrise when the measured humidity is greater than 2% (referenced to sensor temperature). Data delivered to the Planetary Data System include relative humidity, sensor temperature, uncertainty of relative humidity, and volume mixing ratio (VMR). VMR is calculated using the MEDA-PS pressure sensor values. According to observations, nighttime absolute humidity follows a seasonal curve in which release of water vapor from the northern cap with advancing northern spring and summer is visible. At ground level, frost conditions may have been reached a few times during this season (Ls 44 degrees -210 degrees). Volume mixing ratio values show a declining diurnal trend from the midnight toward the morning suggesting adsorption of humidity into the ground. Observations are compared with an adsorptive single-column model, which complies with observations and confirms adsorption. The model allows estimating daytime VMR levels. Short-term subhour timescales show large temporal fluctuations in humidity, which suggest vertical and spatial advection.
引用
收藏
页数:20
相关论文
共 82 条
  • [11] THERMAL EMISSION SPECTROMETER EXPERIMENT - MARS-OBSERVER MISSION
    CHRISTENSEN, PR
    ANDERSON, DL
    CHASE, SC
    CLARK, RN
    KIEFFER, HH
    MALIN, MC
    PEARL, JC
    CARPENTER, J
    BANDIERA, N
    BROWN, FG
    SILVERMAN, S
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 1992, 97 (E5) : 7719 - 7734
  • [12] MAPPING MARS WATER-VAPOR WITH THE VERY LARGE ARRAY
    CLANCY, RT
    GROSSMAN, AW
    MUHLEMAN, DO
    [J]. ICARUS, 1992, 100 (01) : 48 - 59
  • [13] Water vapor saturation at low altitudes around Mars aphelion: A key to Mars climate?
    Clancy, RT
    Grossman, AW
    Wolff, MJ
    James, PB
    Rudy, DJ
    Billawala, YN
    Sandor, BJ
    Lee, SW
    Muhleman, DO
    [J]. ICARUS, 1996, 122 (01) : 36 - 62
  • [14] ATMOSPHERIC AND SURFACE PROPERTIES OF MARS OBTAINED BY INFRARED SPECTROSCOPY ON MARINER-9
    CONRATH, B
    CURRAN, R
    HANEL, R
    KUNDE, V
    MAGUIRE, W
    PEARL, J
    PIRRAGLIA, J
    WELKER, J
    BURKE, T
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH, 1973, 78 (20): : 4267 - 4278
  • [15] De La Torre Juarez Manuel, 2021, PDS, DOI 10.17189/1522849
  • [16] A TENTATIVE DETECTION OF THE 183-GHZ WATER-VAPOR LINE IN THE MARTIAN ATMOSPHERE - CONSTRAINTS UPON THE H2O ABUNDANCE AND VERTICAL-DISTRIBUTION
    ENCRENAZ, T
    LELLOUCH, E
    CERNICHARO, J
    PAUBERT, G
    GULKIS, S
    [J]. ICARUS, 1995, 113 (01) : 110 - 118
  • [17] A mapping of martian water sublimation during early northern summer using OMEGA/Mars Express
    Encrenaz, T
    Melchiorri, R
    Fouchet, T
    Drossart, P
    Lellouch, E
    Gondet, B
    Bibring, JP
    Langevin, Y
    Titov, D
    Ignatiev, N
    Forget, F
    [J]. ASTRONOMY & ASTROPHYSICS, 2005, 441 (03) : L9 - L12
  • [18] The water vapor vertical distribution on mars from millimeter transitions of HDO and H218O
    Encrenaz, T
    Lellouch, E
    Paubert, G
    Gulkis, S
    [J]. PLANETARY AND SPACE SCIENCE, 2001, 49 (07) : 731 - 741
  • [19] Farmer C. B., 1977, Journal of Geophysical Research, V82, P4225, DOI 10.1029/JS082i028p04225
  • [20] MAWD observations revisited: seasonal behavior of water vapor in the martian atmosphere
    Fedorova, AA
    Rodin, AV
    Baklanova, IV
    [J]. ICARUS, 2004, 171 (01) : 54 - 67