Initial Results of the Relative Humidity Observations by MEDA Instrument Onboard the Mars 2020 Perseverance Rover

被引:15
作者
Polkko, J. [1 ]
Hieta, M. [1 ]
Harri, A. -M. [1 ]
Tamppari, L. [2 ]
Martinez, G. [3 ,4 ]
Viudez-Moreiras, D. [5 ]
Savijarvi, H. [6 ]
Conrad, P. [7 ]
Zorzano Mier, M. P. [5 ]
De La Torre Juarez, M. [2 ]
Hueso, R. [8 ]
Munguira, A. [8 ]
Leino, J. [1 ]
Gomez, F. [5 ]
Jaakonaho, I. [1 ]
Fischer, E.
Genzer, M. [1 ]
Apestigue, V.
Arruego, I. [9 ]
Banfield, D. [10 ]
Lepinette, A. [5 ]
Paton, M. [1 ]
Rodriguez-Manfredi, J. A. [5 ]
Sanchez Lavega, A. [8 ]
Sebastian, E. [5 ]
Toledo, D. [9 ]
Vicente-Retortillo, A. [5 ]
机构
[1] Finnish Meteorol Inst, Helsinki, Finland
[2] CALTECH, Jet Prop Lab, Pasadena, CA USA
[3] USRA, Lunar & Planetary Inst, Houston, TX USA
[4] Univ Michigan, Ann Arbor, MI USA
[5] Ctr Astrobiol INTA CSIC, Madrid, Spain
[6] Univ Helsinki, Helsinki, Finland
[7] Carnegie Inst Sci, Washington, DC USA
[8] Univ Pais Vasco UPV EHU, Bilbao, Spain
[9] INTA, Madrid, Spain
[10] Cornell Univ, Ithaca, NY USA
基金
美国国家航空航天局;
关键词
Mars; humidity; water vapor; observations; instrument performance; near surface; MARTIAN WATER-VAPOR; GALE CRATER; ATMOSPHERE; CYCLE; ABUNDANCE; CALIBRATION; SATURATION; EXCHANGE; BEHAVIOR; VIKING;
D O I
10.1029/2022JE007447
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The Mars 2020 mission rover "Perseverance", launched on 30 July 2020 by NASA, landed successfully 18 February 2021 at Jezero Crater, Mars (Lon. E 77.4509 degrees Lat. N 18.4446 degrees). The landing took place at Mars solar longitude Ls = 5.2 degrees, close to start of the northern spring. Perseverance's payload includes the relative humidity sensor MEDA HS (Mars Environmental Dynamics Analyzer Humidity Sensor), which operations, performance, and the first observations from sol 80 to sol 410 (Ls 44 degrees -210 degrees) of Perseverance's operations we describe. The relative humidity measured by MEDA-HS is reliable from late night hours to few tens of minutes after sunrise when the measured humidity is greater than 2% (referenced to sensor temperature). Data delivered to the Planetary Data System include relative humidity, sensor temperature, uncertainty of relative humidity, and volume mixing ratio (VMR). VMR is calculated using the MEDA-PS pressure sensor values. According to observations, nighttime absolute humidity follows a seasonal curve in which release of water vapor from the northern cap with advancing northern spring and summer is visible. At ground level, frost conditions may have been reached a few times during this season (Ls 44 degrees -210 degrees). Volume mixing ratio values show a declining diurnal trend from the midnight toward the morning suggesting adsorption of humidity into the ground. Observations are compared with an adsorptive single-column model, which complies with observations and confirms adsorption. The model allows estimating daytime VMR levels. Short-term subhour timescales show large temporal fluctuations in humidity, which suggest vertical and spatial advection.
引用
收藏
页数:20
相关论文
共 82 条
  • [1] Water Vapor Vertical Profiles on Mars in Dust Storms Observed by TGO/NOMAD
    Aoki, S.
    Vandaele, A. C.
    Daerden, F.
    Villanueva, G. L.
    Liuzzi, G.
    Thomas, I. R.
    Erwin, J. T.
    Trompet, L.
    Robert, S.
    Neary, L.
    Viscardy, S.
    Clancy, R. T.
    Smith, M. D.
    Lopez-Valverde, M. A.
    Hill, B.
    Ristic, B.
    Patel, M. R.
    Bellucci, G.
    Lopez-Moreno, J. -J.
    Vandaele, Ann Carine
    Lopez-Moreno, Jose-Juan
    Bellucci, Giancarlo
    Patel, Manish R.
    Alonso-Rodrigo, Gustavo
    Aoki, Shohei
    Altieri, Francesca
    Bauduin, Sophie
    Bolsee, David
    Carrozzo, Giacomo
    Clancy, R. Todd
    Cloutis, Edward
    Crismani, Matteo
    Daerden, Frank
    Da Pieve, Fabiana
    D'Aversa, Emiliano
    Depiesse, Cedric
    Erwin, Justin T.
    Etiope, Giuseppe
    Fedorova, Anna A.
    Funke, Bernd
    Fussen, Didier
    Garcia-Comas, Maia
    Geminale, Anna
    Gerard, Jean-Claude
    Giuranna, Marco
    Gkouvelis, Leo
    Gonzalez-Galindo, Francisco
    Holmes, James
    Hubert, Benoit
    Ignatiev, Nicolay I.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2019, 124 (12) : 3482 - 3497
  • [2] Discovery and microbial content of the driest site of the hyperarid Atacama Desert, Chile
    Azua-Bustos, Armando
    Caro-Lara, Luis
    Vicuna, Rafael
    [J]. ENVIRONMENTAL MICROBIOLOGY REPORTS, 2015, 7 (03): : 388 - 394
  • [3] Banfield D., 2020, MARCH 2020 MARS EXPL
  • [4] BIPM IEC IFCC ILAC OIML, 2008, 100 JCGM
  • [5] Water vapor variability in the Atacama Desert during the 20th century
    Boehm, Christoph
    Reyers, Mark
    Schween, Jan Herbert
    Crewell, Susanne
    [J]. GLOBAL AND PLANETARY CHANGE, 2020, 190
  • [6] BUCK AL, 1981, J APPL METEOROL, V20, P1527, DOI 10.1175/1520-0450(1981)020<1527:NEFCVP>2.0.CO
  • [7] 2
  • [8] Relative humidity patterns and fog water precipitation in the Atacama Desert and biological implications
    Caceres, Luis
    Gomez-Silva, Benito
    Garro, Ximena
    Rodriguez, Violeta
    Monardes, Vinka
    McKay, Christopher P.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2007, 112 (G4)
  • [9] Seasonal Variability of the Daytime and Nighttime Atmospheric Turbulence Experienced by InSight on Mars
    Chatain, A.
    Spiga, A.
    Banfield, D.
    Forget, F.
    Murdoch, N.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2021, 48 (22)
  • [10] Distinct Microbial Communities in Adjacent Rock and Soil Substrates on a High Arctic Polar Desert
    Choe, Yong-Hoe
    Kim, Mincheol
    Lee, Yoo Kyung
    [J]. FRONTIERS IN MICROBIOLOGY, 2021, 11