Orthogonal polynomials on a class of planar algebraic curves

被引:2
作者
Fasondini, Marco [1 ]
Olver, Sheehan [2 ]
Xu, Yuan [3 ]
机构
[1] Univ Leicester, Sch Comp & Math Sci, Leicester, England
[2] Imperial Coll, Dept Math, London, England
[3] Univ Oregon, Dept Math, Eugene, OR USA
基金
英国工程与自然科学研究理事会;
关键词
Lanczos algorithm; orthogonal polynomials; EQUATION;
D O I
10.1111/sapm.12582
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct bivariate orthogonal polynomials (OPs) on algebraic curves of the form y(m) =phi(x) in R-2 where m= 1, 2 and phi is a polynomial of arbitrary degree.., in terms of univariate semiclassical OPs. We compute connection coefficients that relate the bivariate OPs to a polynomial basis that is itself orthogonal and whose span contains the OPs as a subspace. The connection matrix is shown to be banded and the connection coefficients and Jacobi matrices for OPs of degree 0,.,. N are computed via the Lanczos algorithm in O (Nd-4) operations.
引用
收藏
页码:369 / 405
页数:37
相关论文
共 40 条
  • [1] Bjorck A., 2015, NUMERICAL METHODS MA, DOI [DOI 10.1007/978-3-319-05089-8, 10.1007/978-3-319-05089-8]
  • [2] Vandermonde with Arnoldi
    Brubeck, Pablo D.
    Nakatsukasa, Yuji
    Trefethen, Lloyd N.
    [J]. SIAM REVIEW, 2021, 63 (02) : 405 - 415
  • [3] Chang XK., 2014, J PHYS A-MATH THEOR, V48
  • [4] Chen T., 2021, ICML, P1728
  • [5] Dunkl C.F., 2014, ORTHOGONAL POLYNOMIA, V155
  • [6] Orthogonal Polynomials on Planar Cubic Curves
    Fasondini, Marco
    Olver, Sheehan
    Xu, Yuan
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2023, 23 (01) : 1 - 31
  • [7] Gautschi W., 2004, ORTHOGONAL POLYNOMIA
  • [8] Golub GH, 2010, PRINC SER APPL MATH, P1
  • [9] THE NUMERICALLY STABLE RECONSTRUCTION OF JACOBI MATRICES FROM SPECTRAL DATA
    GRAGG, WB
    HARROD, WJ
    [J]. NUMERISCHE MATHEMATIK, 1984, 44 (03) : 317 - 335
  • [10] Gutleb TS., 2023, POLYNOMIAL RATIONAL