An open-source tool for longitudinal whole-brain and white matter lesion segmentation

被引:16
作者
Cerri, Stefano [1 ]
Greve, Douglas N. [1 ,3 ]
Hoopes, Andrew [1 ]
Lundell, Henrik [2 ]
Siebner, Hartwig R. [2 ,4 ,5 ]
Muehlau, Mark [6 ,7 ]
Van Leemput, Koen [1 ,8 ]
机构
[1] Harvard Med Sch, Massachusetts Gen Hosp, Athinoula A Martinos Ctr Biomed Imaging, Boston, MA 02115 USA
[2] Copenhagen Univ Hosp Amager & Hvidovre, Danish Res Ctr Magnet Resonance, Copenhagen, Denmark
[3] Harvard Med Sch, Dept Radiol, Boston, MA 02115 USA
[4] Copenhagen Univ Hosp Bispebjerg & Frederiksberg, Dept Neurol, Copenhagen, Denmark
[5] Univ Copenhagen, Inst Clin Med, Fac Med & Hlth Sci, Copenhagen, Denmark
[6] Tech Univ Munich, Neuroimaging Ctr, Sch Med, Dept Neurol, Munich, Germany
[7] Tech Univ Munich, Neuroimaging Ctr, Sch Med, Munich, Germany
[8] Tech Univ Denmark, Dept Hlth Technol, Denmark, Denmark
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
Longitudinal segmentation; Whole-brain segmentation; Lesion segmentation; Generative models; FreeSurfer; MULTIPLE-SCLEROSIS LESIONS; HIPPOCAMPAL ATROPHY; AUTOMATIC DETECTION; ALZHEIMERS-DISEASE; ACTIVE LESIONS; VOLUME CHANGES; MR-IMAGES; NIH MRI; ACCURATE; GRAY;
D O I
10.1016/j.nicl.2023.103354
中图分类号
R445 [影像诊断学];
学科分类号
100207 ;
摘要
In this paper we describe and validate a longitudinal method for whole-brain segmentation of longitudinal MRI scans. It builds upon an existing whole-brain segmentation method that can handle multi-contrast data and robustly analyze images with white matter lesions. This method is here extended with subject-specific latent variables that encourage temporal consistency between its segmentation results, enabling it to better track subtle morphological changes in dozens of neuroanatomical structures and white matter lesions. We validate the proposed method on multiple datasets of control subjects and patients suffering from Alzheimer's disease and multiple sclerosis, and compare its results against those obtained with its original cross-sectional formulation and two benchmark longitudinal methods. The results indicate that the method attains a higher test-retest reliability, while being more sensitive to longitudinal disease effect differences between patient groups. An implementation is publicly available as part of the open-source neuroimaging package FreeSurfer.
引用
收藏
页数:19
相关论文
共 89 条
[1]  
[Anonymous], 2008, Midas J
[2]  
Ashburner J, 2000, HUM BRAIN MAPP, V9, P212, DOI 10.1002/(SICI)1097-0193(200004)9:4<212::AID-HBM3>3.0.CO
[3]  
2-#
[4]   A new method for structural volume analysis of longitudinal brain MRI data and its application in studying the growth trajectories of anatomical brain structures in childhood [J].
Aubert-Broche, B. ;
Fonov, V. S. ;
Garcia-Lorenzo, D. ;
Mouiha, A. ;
Guizard, N. ;
Coupe, P. ;
Eskildsen, S. F. ;
Collins, D. L. .
NEUROIMAGE, 2013, 82 :393-402
[5]   Localization of grey matter atrophy in early RRMS - A longitudinal study [J].
Audoin, Bertrand ;
Davies, Gerard R. ;
Finisku, Leonara ;
Chard, Declan T. ;
Thompson, Alan J. ;
Miller, David H. .
JOURNAL OF NEUROLOGY, 2006, 253 (11) :1495-1501
[6]  
Avants B, 2007, LECT NOTES COMPUT SC, V4792, P303
[7]   Total and Regional Brain Volumes in a Population-Based Normative Sample from 4 to 18 Years: The NIH MRI Study of Normal Brain Development [J].
Ball, William S. ;
Byars, Anna Weber ;
Schapiro, Mark ;
Bommer, Wendy ;
Carr, April ;
German, April ;
Dunn, Scott ;
Rivkin, Michael J. ;
Waber, Deborah ;
Mulkern, Robert ;
Vajapeyam, Sridhar ;
Chiverton, Abigail ;
Davis, Peter ;
Koo, Julie ;
Marmor, Jacki ;
Mrakotsky, Christine ;
Robertson, Richard ;
McAnulty, Gloria ;
Brandt, Michael E. ;
Fletcher, Jack M. ;
Kramer, Larry A. ;
Yang, Grace ;
McCormack, Cara ;
Hebert, Kathleen M. ;
Volero, Hilda ;
Botteron, Kelly ;
McKinstry, Robert C. ;
Warren, William ;
Nishino, Tomoyuki ;
Almli, C. Robert ;
Todd, Richard ;
Constantino, John ;
McCracken, James T. ;
Levitt, Jennifer ;
Alger, Jeffrey ;
O'Neill, Joseph ;
Toga, Arthur ;
Asarnow, Robert ;
Fadale, David ;
Heinichen, Laura ;
Ireland, Cedric ;
Wang, Dah-Jyuu ;
Moss, Edward ;
Zimmerman, Robert A. ;
Bintliff, Brooke ;
Bradford, Ruth ;
Newman, Janice ;
Evans, Alan C. ;
Arnaoutelis, Rozalia ;
Pike, G. Bruce .
CEREBRAL CORTEX, 2012, 22 (01) :1-12
[8]   Evolution from a first clinical demyelinating event to multiple sclerosis in the REFLEX trial: Regional susceptibility in the conversion to multiple sclerosis at disease onset and its amenability to subcutaneous interferon beta-1a [J].
Battaglini, Marco ;
Vrenken, Hugo ;
Brocci, Riccardo Tappa ;
Gentile, Giordano ;
Luchetti, Ludovico ;
Versteeg, Adriaan ;
Freedman, Mark S. ;
Uitdehaag, Bernard M. J. ;
Kappos, Ludwig ;
Comi, Giancarlo ;
Seitzinger, Andrea ;
Jack, Dominic ;
Sormani, Maria Pia ;
Barkhof, Frederik ;
De Stefano, Nicola .
EUROPEAN JOURNAL OF NEUROLOGY, 2022, 29 (07) :2024-2035
[9]   Automated Identification of Brain New Lesions in Multiple Sclerosis Using Subtraction Images [J].
Battaglini, Marco ;
Rossi, Francesca ;
Grove, Richard A. ;
Stromillo, Maria Laura ;
Whitcher, Brandon ;
Matthews, Paul M. ;
De Stefano, Nicola .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2014, 39 (06) :1543-1549
[10]   Intra-and interscanner variability of magnetic resonance imaging based volumetry in multiple sclerosis [J].
Biberacher, Viola ;
Schmidt, Paul ;
Keshavan, Anisha ;
Boucard, Christine C. ;
Righart, Ruthger ;
Saemann, Philipp ;
Preibisch, Christine ;
Froebel, Daniel ;
Aly, Lilian ;
Hemmer, Bernhard ;
Zimmer, Claus ;
Henry, Roland G. ;
Muehlau, Mark .
NEUROIMAGE, 2016, 142 :479-488