Learning Patch-Channel Correspondence for Interpretable Face Forgery Detection

被引:18
作者
Hua, Yingying [1 ,2 ]
Shi, Ruixin [1 ,2 ]
Wang, Pengju [1 ,2 ]
Ge, Shiming [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Informat Engn, Beijing 100095, Peoples R China
[2] Univ Chinese Acad Sci, Sch Cyber Secur, Beijing 100085, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Forgery; Faces; Feature extraction; Deep learning; Decorrelation; Visualization; Task analysis; Face forgery detection; interpretable representation learning; patch-channel correspondence; DEEP NEURAL-NETWORKS;
D O I
10.1109/TIP.2023.3246793
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Beyond high accuracy, good interpretability is very critical to deploy a face forgery detection model for visual content analysis. In this paper, we propose learning patch-channel correspondence to facilitate interpretable face forgery detection. Patch-channel correspondence aims to transform the latent features of a facial image into multi-channel interpretable features where each channel mainly encoders a corresponding facial patch. Towards this end, our approach embeds a feature reorganization layer into a deep neural network and simultaneously optimizes classification task and correspondence task via alternate optimization. The correspondence task accepts multiple zero-padding facial patch images and represents them into channel-aware interpretable representations. The task is solved by step-wisely learning channel-wise decorrelation and patch-channel alignment. Channel-wise decorrelation decouples latent features for class-specific discriminative channels to reduce feature complexity and channel correlation, while patch-channel alignment then models the pairwise correspondence between feature channels and facial patches. In this way, the learned model can automatically discover corresponding salient features associated to potential forgery regions during inference, providing discriminative localization of visualized evidences for face forgery detection while maintaining high detection accuracy. Extensive experiments on popular benchmarks clearly demonstrate the effectiveness of the proposed approach in interpreting face forgery detection without sacrificing accuracy. The source code is available at https://github.com/Jae35/IFFD
引用
收藏
页码:1668 / 1680
页数:13
相关论文
共 74 条
[1]   Principal component analysis [J].
Abdi, Herve ;
Williams, Lynne J. .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (04) :433-459
[2]   Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI) [J].
Adadi, Amina ;
Berrada, Mohammed .
IEEE ACCESS, 2018, 6 :52138-52160
[3]  
Afchar D, 2018, IEEE INT WORKS INFOR
[4]  
Agarwal S., 2019, P IEEE CVF C COMP VI, P38, DOI DOI 10.4108/EAI.18-7-2019
[5]   Evaluating Saliency Map Explanations for Convolutional Neural Networks: A User Study [J].
Alqaraawi, Ahmed ;
Schuessler, Martin ;
Weiss, Philipp ;
Costanza, Enrico ;
Berthouze, Nadia .
PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES, IUI 2020, 2020, :275-285
[6]   Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI [J].
Barredo Arrieta, Alejandro ;
Diaz-Rodriguez, Natalia ;
Del Ser, Javier ;
Bennetot, Adrien ;
Tabik, Siham ;
Barbado, Alberto ;
Garcia, Salvador ;
Gil-Lopez, Sergio ;
Molina, Daniel ;
Benjamins, Richard ;
Chatila, Raja ;
Herrera, Francisco .
INFORMATION FUSION, 2020, 58 :82-115
[7]   The ''independent components'' of natural scenes are edge filters [J].
Bell, AJ ;
Sejnowski, TJ .
VISION RESEARCH, 1997, 37 (23) :3327-3338
[8]   Algorithms for the matrix pth root [J].
Bini, D ;
Higham, N ;
Meini, B .
NUMERICAL ALGORITHMS, 2005, 39 (04) :349-378
[9]  
Cao J., 2022, P IEEECVF C COMPUTER, P4113
[10]   What Makes Fake Images Detectable? Understanding Properties that Generalize [J].
Chai, Lucy ;
Bau, David ;
Lim, Ser-Nam ;
Isola, Phillip .
COMPUTER VISION - ECCV 2020, PT XXVI, 2020, 12371 :103-120