Giant Gateable Osmotic Power Generation from a Goldilocks Two-Dimensional Polymer

被引:22
作者
Cheng, Baorui [1 ]
Zhong, Yu [1 ,2 ]
Qiu, Yuqing [1 ]
Vaikuntanathan, Suriyanarayanan [1 ,3 ]
Park, Jiwoong [1 ,4 ]
机构
[1] Univ Chicago, Dept Chem, Chicago, IL 60637 USA
[2] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA
[3] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA
[4] Univ Chicago, James Franck Inst, Pritzker Sch Mol Engn, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
ENERGY-CONVERSION; REVERSE ELECTRODIALYSIS; CONCENTRATION-GRADIENT; SALINITY GRADIENT; GAS-PHASE; MEMBRANE; LIQUID; IONS;
D O I
10.1021/jacs.2c12853
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Generating electricity from a salinity gradient, known as osmotic power, provides a sustainable energy source, but it requires precise nanoscale control of membranes for maximum performance. Here, we report an ultrathin membrane, where molecule-specific short-range interactions enable giant gateable osmotic power with a record high power density (2 kW/m2 for 1 M parallel to 1 mM KCl). Our membranes are charge-neutral two-dimensional polymers synthesized from molecular building blocks and operate in a Goldilocks regime that simultaneously maintains high ionic conductivity and permselectivity. Molecular dynamics simulations quantitatively confirm that the functionalized nanopores are small enough for high selectivity through shortrange ion-membrane interactions and large enough for fast cross membrane transport. The short-range mechanism further enables reversible gateable operation, as demonstrated by polarity switching of osmotic power with additional gating ions.
引用
收藏
页码:5261 / 5269
页数:9
相关论文
共 51 条
[31]   An electric-eel-inspired soft power source from stacked hydrogels [J].
Schroeder, Thomas B. H. ;
Guha, Anirvan ;
Lamoureux, Aaron ;
VanRenterghem, Gloria ;
Sept, David ;
Shtein, Max ;
Yang, Jerry ;
Mayer, Michael .
NATURE, 2017, 552 (7684) :214-+
[32]   Scaling Behavior for Ionic Transport and its Fluctuations in Individual Carbon Nanotubes [J].
Secchi, Eleonora ;
Nigues, Antoine ;
Jubin, Laetitia ;
Siria, Alessandro ;
Bocquet, Lyderic .
PHYSICAL REVIEW LETTERS, 2016, 116 (15)
[33]   New avenues for the large-scale harvesting of blue energy [J].
Siria, Alessandro ;
Bocquet, Marie-Laure ;
Bocquet, Lyderic .
NATURE REVIEWS CHEMISTRY, 2017, 1 (11)
[34]   Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube [J].
Siria, Alessandro ;
Poncharal, Philippe ;
Biance, Anne -Laure ;
Fulcrand, Remy ;
Blase, Xavier ;
Purcell, Stephen T. ;
Bocquet, Lyderic .
NATURE, 2013, 494 (7438) :455-458
[35]   Power Generation by Reverse Electrodialysis in a Microfluidic Device with a Nafion Ion-Selective Membrane [J].
Tsai, Tsung-Chen ;
Liu, Chia-Wei ;
Yang, Ruey-Jen .
MICROMACHINES, 2016, 7 (11)
[36]   Ion-capture electrodialysis using multifunctional adsorptive membranes [J].
Uliana, Adam A. ;
Bui, Ngoc T. ;
Kamcev, Jovan ;
Taylor, Mercedes K. ;
Urban, Jeffrey J. ;
Long, Jeffrey R. .
SCIENCE, 2021, 372 (6539) :296-+
[37]   Blue Energy Conversion from Holey-Graphene-like Membranes with a High Density of Subnanometer Pores [J].
Wang, Hao ;
Su, Liangmei ;
Yagmurcukardes, Mehmet ;
Chen, Jiawei ;
Jiang, Yu ;
Li, Zhe ;
Quan, Anchang ;
Peeters, Francois M. ;
Wang, Cheng ;
Geim, Andre K. ;
Hu, Sheng .
NANO LETTERS, 2020, 20 (12) :8634-8639
[38]   Nanopore-Based Power Generation from Salinity Gradient: Why It Is Not Viable [J].
Wang, Li ;
Wang, Zhangxin ;
Patel, Sohum K. ;
Lin, Shihong ;
Elimelech, Menachem .
ACS NANO, 2021, 15 (03) :4093-4107
[39]   H-bond interactions between arsenite and deoxynucleotides at different pH values: A combined computational and experimental study [J].
Wu, Xiuxiu ;
Yu, Huaxing ;
Yuan, Min ;
Cao, Hui ;
Ye, Tai ;
Yu, Jinsong ;
Xu, Fei .
CHEMOSPHERE, 2020, 251
[40]   Quantitative description of hydrogen bonding in chloride-water clusters [J].
Xantheas, SS .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (23) :9703-9713